Skip to main content

Exploring the Intersection of Artificial Intelligence and Blockchain Technology in Complex Systems: A Systematic Review

  • Conference paper
  • First Online:
The Smart IoT Blueprint: Engineering a Connected Future (AIoTSS 2024)

Abstract

As the domains of artificial intelligence (AI) and blockchain technology continue to evolve, there is a growing interest in exploring their intersection and potential synergies. This paper provides a comprehensive review of recent advancements and applications of AI in the context of blockchain technology. In this work, we analyze the utilization of blockchain technology to enhance AI algorithms, facilitate decentralized AI systems, and address challenges related to data privacy, security, and scalability. Additionally, we discuss emerging trends, challenges, and future research directions in the field of AI in blockchain, highlighting opportunities for innovation and collaboration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aknan, M., Singh, M. P., & Arya, R. (2023). AI and Blockchain Assisted Framework for Offloading and Resource Allocation in Fog Computing. Journal of Grid Computing, 21(4). https://doi.org/10.1007/s10723-023-09694-7

  • Alatawi, M. N. (2023). An Approach Based on Machine Learning for the Cybersecurity of Blockchain-Based Smart Internet of Medical Things (IoMT) Networks. International Journal of Software Engineering and Knowledge Engineering, 33(10), 1513–1535. https://doi.org/10.1142/S0218194023500419

    Article  Google Scholar 

  • Assiri, F. Y., & Ragab, M. (2023). Optimal Deep-Learning-Based Cyberattack Detection in a Blockchain-Assisted IoT Environment. Mathematics, 11(19). https://doi.org/10.3390/math11194080

  • Baldominos, A., & Saez, Y. (2019). Coin.AI: A proof-of-useful-work scheme for blockchain-based distributed deep learning. Entropy, 21(8), 723.

    Google Scholar 

  • Bian, G., Qu, W., & Shao, B. (2023). Blockchain-Based Trusted Federated Learning with Pre-Trained Models for COVID-19 Detection. Electronics (Switzerland), 12(9). https://doi.org/10.3390/electronics12092068

  • Bravo-Marquez, F., Reeves, S., & Ugarte, M. (2019, April). Proof-of-learning: a blockchain consensus mechanism based on machine learning competitions. In 2019 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPCON) (pp. 119–124). IEEE.

    Google Scholar 

  • Chamola, V., Goyal, A., Sharma, P., Hassija, V., Binh, H. T. T., & Saxena, V. (2023). Artificial intelligence-assisted blockchain-based framework for smart and secure EMR management. Neural Computing and Applications, 35(31), 22959–22969. https://doi.org/10.1007/s00521-022-07087-7

    Article  Google Scholar 

  • Chenli, C., Li, B., Shi, Y., & Jung, T. (2019, May). Energy-recycling blockchain with proof-of-deep-learning. In 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC) (pp. 19–23). IEEE.

    Google Scholar 

  • Chi, C., Yin, Z., Liu, Y., & Chai, S. (2024). A Trusted Cloud-Edge Decision Architecture Based on Blockchain and MLP for AIoT. IEEE Internet of Things Journal, 11(1), 201–216. https://doi.org/10.1109/JIOT.2023.3300845

    Article  Google Scholar 

  • Golec, M., Gill, S. S., Golec, M., Xu, M., Ghosh, S. K., Kanhere, S. S., Rana, O., & Uhlig, S. (2023). BlockFaaS: Blockchain-enabled Serverless Computing Framework for AI-driven IoT Healthcare Applications. Journal of Grid Computing, 21(4). https://doi.org/10.1007/s10723-023-09691-w

  • Harris, J. D. (2020, September). Analysis of Models for Decentralized and Collaborative AI on Blockchain. In International Conference on Blockchain (pp. 142–153). Springer, Cham.

    Google Scholar 

  • Harris, J. D., & Waggoner, B. (2019, July). Decentralized and collaborative AI on blockchain. In 2019 IEEE International Conference on Blockchain (Blockchain) (pp. 368–375). IEEE.

    Google Scholar 

  • Krichen, M. (2023). Strengthening the Security of Smart Contracts through the Power of Artificial Intelligence. Computers, 12(5). https://doi.org/10.3390/computers12050107

  • Kumar, S., Lim, W. M., Sivarajah, U., & Kaur, J. (2023). Artificial Intelligence and Blockchain Integration in Business: Trends from a Bibliometric-Content Analysis. Information Systems Frontiers, 25(2), 871–896. https://doi.org/10.1007/s10796-022-10279-0

    Article  Google Scholar 

  • Lan, Y., Liu, Y., & Li, B. (2020). Proof of Learning (PoLe): Empowering Machine Learning with Consensus Building on Blockchains. arXiv preprint arXiv:2007.15145.

  • Li, B., Chenli, C., Xu, X., Shi, Y., & Jung, T. (2019). DLBC: A Deep Learning-Based Consensus in Blockchains for Deep Learning Services. arXiv preprint arXiv:1904.07349.

  • Li, J., Qin, R., Guan, S., Hou, J., & Wang, F. (2024). Blockchain Intelligence: Intelligent Blockchains for Web 3.0 and Beyond. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 1–10. https://doi.org/10.1109/TSMC.2023.3348449

  • Merlina, A. (2019, December). BlockML: a useful proof of work system based on machine learning tasks. In Proceedings of the 20th International Middleware Conference Doctoral Symposium (pp. 6–8).

    Google Scholar 

  • Nath, P., Mushahary, J. R., Roy, U., Brahma, M., & Singh, P. K. (2023). AI and Blockchain-based source code vulnerability detection and prevention system for multiparty software development. Computers and Electrical Engineering, 106. https://doi.org/10.1016/j.compeleceng.2023.108607

  • Pandl, K. D., Thiebes, S., Schmidt-Kraepelin, M., & Sunyaev, A. (2020). On the convergence of artificial intelligence and distributed ledger technology: A scoping review and future research agenda. IEEE Access, 8, 57075–57095.

    Article  Google Scholar 

  • Sami, H., Mizouni, R., Otrok, H., Singh, S., Bentahar, J., & Mourad, A. (2024). LearnChain: Transparent and cooperative reinforcement learning on Blockchain. Future Generation Computer Systems, 150, 255–271. https://doi.org/10.1016/j.future.2023.09.012

    Article  Google Scholar 

  • Shinde, R., Patil, S., Kotecha, K., Potdar, V., Selvachandran, G., & Abraham, A. (2024). Securing AI-based healthcare systems using blockchain technology: A state-of-the-art systematic literature review and future research directions. Transactions on Emerging Telecommunications Technologies, 35(1). https://doi.org/10.1002/ett.4884

  • Shreya, S., Chatterjee, K., & Singh, A. (2023). BFSF: A secure IoT based framework for smart farming using blockchain. Sustainable Computing: Informatics and Systems, 40. https://doi.org/10.1016/j.suscom.2023.100917

  • Sinha, A., Singh, S., & Verma, H. K. (2024). AI-Driven Task Scheduling Strategy with Blockchain Integration for Edge Computing. Journal of Grid Computing, 22(1). https://doi.org/10.1007/s10723-024-09743-9

  • Sun, C., Li, D., Wang, B., & Song, J. (2023). AI-Enabled Consensus Algorithm in Human-Centric Collaborative Computing for Internet of Vehicle. Symmetry, 15(6). https://doi.org/10.3390/sym15061264

  • Swathi, G., & Pahuja, A. (2024). FinTech Frontiers: Cloud Computing and Artificial Intelligence Applications for Intelligent Finance Investment and Blockchain in the Financial Sector. International Journal of Intelligent Systems and Applications in Engineering, 12(4), 654–659. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85179664161&partnerID=40&md5=cd23c36956e0fb05e1aa0227cfb50ecf

  • Yan, X., Xu, Y., Yao, S., & Sun, Y. (2023). A Domain Embedding Model for Botnet Detection Based on Smart Blockchain. IEEE Internet of Things Journal, 1. https://doi.org/10.1109/JIOT.2023.3320046

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vubangsi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vubangsi, M., Nyuga, G., Al-Turjman, F. (2024). Exploring the Intersection of Artificial Intelligence and Blockchain Technology in Complex Systems: A Systematic Review. In: Al-Turjman, F. (eds) The Smart IoT Blueprint: Engineering a Connected Future. AIoTSS 2024. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-031-63103-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63103-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63102-3

  • Online ISBN: 978-3-031-63103-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics