Skip to main content

STNWeb for the Analysis of Optimization Algorithms: A Short Introduction

  • Conference paper
  • First Online:
Metaheuristics (MIC 2024)

Abstract

In the realm of optimization, where intricate landscapes conceal possibly hidden pathways to high-quality solutions, STNWeb serves as a beacon of clarity. This novel web-based visualization platform empowers researchers to delve into the intricate interplay between algorithms and optimization problems, uncovering the factors that influence algorithm performance across diverse problem domains, be they discrete/combinatorial or continuous. By leveraging the inherent power of visual data representation, STNWeb transcends traditional analytical methods, providing a robust foundation for dissecting algorithm behavior and pinpointing the mechanisms that elevate one algorithm above another. This visually-driven approach fosters a deeper understanding of algorithmic strengths and weaknesses, ultimately strengthening the discourse surrounding algorithm selection and refinement for complex optimization tasks.

The research presented in this paper was supported by grants TED2021-129319B-I00 and PID2022-136787NB-I00 funded by MCIN/AEI/10.13039/501100011033.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In practice, the HAC approach generally results in more informative STN plots than the standard strategy, but it also tends to require more computational time.

References

  1. Chacón Sartori, C., Blum, C., Ochoa, G.: STNWeb: a new visualization tool for analyzing optimization algorithms. Softw. Impacts 17, 100558 (2023). https://doi.org/10.1016/j.simpa.2023.100558. https://www.sciencedirect.com/science/article/pii/S2665963823000957

  2. Lavinas, Y., Aranha, C., Ochoa, G.: Search trajectories networks of multiobjective evolutionary algorithms. In: Jiménez Laredo, J.L., Hidalgo, J.I., Babaagba, K.O. (eds.) EvoApplications 2022. LNCS, vol. 13224, pp. 223–238. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-02462-7_15

    Chapter  Google Scholar 

  3. Ochoa, G., Liefooghe, A., Lavinas, Y., Aranha, C.: Decision/objective space trajectory networks for multi-objective combinatorial optimisation. In: Pérez Cáceres, L., Stützle, T. (eds.) EvoCOP 2023. LNCS, vol. 13987, pp. 211–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30035-6_14

    Chapter  Google Scholar 

  4. Ochoa, G., Malan, K.M., Blum, C.: Search trajectory networks: a tool for analysing and visualising the behaviour of metaheuristics. Appl. Soft Comput. 109, 107492 (2021). https://doi.org/10.1016/j.asoc.2021.107492. https://www.sciencedirect.com/science/article/pii/S1568494621004154

  5. OpenAI, et al.: GPT-4 technical report (2023). https://arxiv.org/abs/2303.08774

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilo Chacón Sartori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chacón Sartori, C., Blum, C. (2024). STNWeb for the Analysis of Optimization Algorithms: A Short Introduction. In: Sevaux, M., Olteanu, AL., Pardo, E.G., Sifaleras, A., Makboul, S. (eds) Metaheuristics. MIC 2024. Lecture Notes in Computer Science, vol 14754. Springer, Cham. https://doi.org/10.1007/978-3-031-62922-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62922-8_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62921-1

  • Online ISBN: 978-3-031-62922-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics