Skip to main content

Bayesian Approach for Parameter Estimation in Vehicle Lateral Dynamics

  • Conference paper
  • First Online:
Foundations of Intelligent Systems (ISMIS 2024)

Abstract

Estimating parameters for nonlinear dynamic systems is a significant challenge across numerous research areas and practical applications. This paper introduces a novel two-step approach for estimating parameters that control the lateral dynamics of a vehicle, acknowledging the limitations and noise within the data. The methodology merges spline smoothing of system observations with a Bayesian framework for parameter estimation. The initial phase involves applying spline smoothing to the system state variable observations, effectively filtering out noise and achieving precise estimates of the state variables’ derivatives. Consequently, this technique allows for the direct estimation of parameters from the differential equations characterizing the system’s dynamics, bypassing the need for labor-intensive integration procedures. The subsequent phase focuses on parameter estimation from the differential equation residuals, utilizing a Bayesian method known as likelihood-free ABC-SMC. This Bayesian strategy offers multiple advantages: it mitigates the impact of data scarcity by incorporating prior knowledge regarding the vehicle’s physical properties and enhances interpretability through the provision of a posterior distribution for the parameters likely responsible for the observed data. Employing this innovative method facilitates the robust estimation of parameters governing vehicle lateral dynamics, even in the presence of limited and noisy data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sinha, N.K.: System identification - theory for the user : Lennart ljung. Autom 25(3), 475–476 (1989)

    Article  Google Scholar 

  2. Biegler, L.T., Damiano, J.J., Blau, G.E.: Nonlinear parameter estimation: a case study comparison. AIChE J. 32(1), 29–45 (1986)

    Article  Google Scholar 

  3. Wang, S., Xu, X.: Parameter estimation of internal thermal mass of building dynamic models using genetic algorithm. Energy Convers. Manage. 47(13), 1927–1941 (2006)

    Article  Google Scholar 

  4. Gutowski, N., Schang, D., Camp, O., Abraham, P.: A novel multi-objective medical feature selection compass method for binary classification. Artif. Intell. Med. 127, 102277 (2022)

    Article  Google Scholar 

  5. Eftaxias, A., Font, J., Fortuny, A., Fabregat, A., Stüber, F.: Nonlinear kinetic parameter estimation using simulated annealing. Comput. Chem. Eng. 26(12), 1725–1733 (2002)

    Article  Google Scholar 

  6. Schwaab, M., Biscaia, E.C., Jr., Monteiro, J.L., Pinto, J.C.: Nonlinear parameter estimation through particle swarm optimization. Chem. Eng. Sci. 63(6), 1542–1552 (2008)

    Article  Google Scholar 

  7. Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, 1st edn. Society for Industrial and Applied Mathematics, USA (1998)

    Book  Google Scholar 

  8. Raissi, M., Perdikaris, P., Karniadakis, G.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  Google Scholar 

  9. Barber, D., Wang, Y.: Gaussian processes for Bayesian estimation in ordinary differential equations. In: International Conference on Machine Learning (2014)

    Google Scholar 

  10. Calderhead, B., Girolami, M., Lawrence, N.: Accelerating bayesian inference over nonlinear differential equations with gaussian processes. In: Advances in Neural Information Processing Systems, vol. 21. Curran Associates, Inc. (2008)

    Google Scholar 

  11. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning, MIT Press, Cambridge (2006)

    Google Scholar 

  12. Chib, S., Greenberg, E.: Understanding the metropolis-hastings algorithm. Am. Stat. 49(4), 327–335 (1995)

    Article  Google Scholar 

  13. Casella, G., George, E.I.: Explaining the Gibbs sampler. Am. Stat. 46(3), 167–174 (1992)

    Article  MathSciNet  Google Scholar 

  14. Marin, J.-M., Pudlo, P., Robert, C.P., Ryder, R.J.: Approximate Bayesian computational methods. Stat. Comput. 22, 1167–1180 (2012)

    Article  MathSciNet  Google Scholar 

  15. Toni, T., Welch, D., Strelkowa, N., Ipsen, A., Stumpf, M.P.: Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J. R. Soc. Interface 6, 187–202 (2009)

    Article  Google Scholar 

  16. Liepe, J., Kirk, P., Filippi, S., Toni, T., Barnes, C.P., Stumpf, M.P.H.: A framework for parameter estimation and model selection from experimental data in systems biology using approximate Bayesian computation. Nat. Protoc. 9(2), 439–456 (2014)

    Article  Google Scholar 

  17. Secrier, M., Toni, T., Stumpf, M.P.H.: The ABC of reverse engineering biological signalling systems. Mol. BioSyst. 5, 1925–1935 (2009)

    Article  Google Scholar 

  18. Lillacci, G., Khammash, M.: Parameter estimation and model selection in computational biology. PLOS Comput. Biol. (2010)

    Google Scholar 

  19. Pacejka, H. Bakker, E., Pacejka, W., Hans, B., Afsar, M.: Tyre and Vehicle Dynamics. Elsevier Science (2006)

    Google Scholar 

Download references

Acknowledgment

This research is financially supported by the Ministry of Defense through the Defense Innovation Agency (AID) and by the National Institute for Research in Computer Science and Automation (INRIA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Lionti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lionti, F., Gutowski, N., Aubin, S., Martinet, P. (2024). Bayesian Approach for Parameter Estimation in Vehicle Lateral Dynamics. In: Appice, A., Azzag, H., Hacid, MS., Hadjali, A., Ras, Z. (eds) Foundations of Intelligent Systems. ISMIS 2024. Lecture Notes in Computer Science(), vol 14670. Springer, Cham. https://doi.org/10.1007/978-3-031-62700-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62700-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62699-9

  • Online ISBN: 978-3-031-62700-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics