Abstract
The affine space of traceless complex matrices in which the sum of all elements in every row and every column is equal to one is presented as an example of an affine space with a Lie bracket or a Lie affgebra.
In memory of Anatol Odzijewicz
The research is partially supported by the National Science Centre, Poland, Grant no. 2019/35/B/ST1/01115
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
The definition (18) is equivalent to say that \([x,y]= \zeta \triangleright _x y\), for all \(x,y\in {\mathbb A}\). The latter Lie bracket can be defined on any affine space, not necessarily one-dimensional one.
References
S. Breaz, T. Brzeziński, B. Rybołowicz, P. Saracco, Heaps of modules and affine spaces, Annal. Mat. Pura Appl. 2023, https://doi.org/10.1007/s10231-023-01369-0
S. Breaz, T. Brzeziński, B. Rybołowicz, P. Saracco, Heaps of modules: categorical aspects, Annal. Mat. Pura Appl. 203, 403–445, 2024.
T. Brzeziński, Trusses: Between braces and rings. Trans. Amer. Math. Soc. 372, 4149–4176, 2019.
T. Brzeziński, Trusses: Paragons, ideals and modules. Journal of Pure and Applied Algebra 224, 106258, 2020.
T. Brzeziński, J. Papworth, Lie and Nijenhuis brackets on affine spaces, arXiv:2310.08979, 2023.
K. Grabowska, J. Grabowski, P. Urbański, Lie brackets on affine bundles, Bull. Belg. Math. Soc. Simon Stevin, 30, 683–704, 2023.
K. Grabowska, J. Grabowski, P. Urbański, AV-differential geometry: Poisson and Jacobi structures, J. Geom. Phys.52, 398–446, 2004.
K. Grabowska, J. Grabowski, P. Urbański, Frame-independent mechanics: geometry on affine bundles, Travaux mathematiques. Fasc. XVI, 107–120, Trav. Math., 16, Univ. Luxemb., Luxembourg, 2005.
K. Grabowska, J. Grabowski, P. Urbański, AV-differential geometry: Euler-Lagrangian equations, J. Geom. Phys.57, 1984–1998, 2007.
H. Prüfer, Theorie der Abelschen Gruppen. I. Grundeigenschaften, Math. Z. 20:165–187, 1924.
W. Tulczyjew, Frame independence of analytical mechanics, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 119, 273–279, 1985.
Acknowledgements
I am grateful to Janusz Grabowski for suggesting to consider the Lie algebra hull of \(\mathrm {sna}{(n , {\mathbb C})}\). The interpretation of \(\mathcal {L}(\mathrm {sna}{(n , {\mathbb C})} ;\mathbf {o})\) as the Lie ideal (33) in the non-standard Lie algebra structure (32) on \(\mathrm {gl}{(n , {\mathbb C})}\) presented in Remark 7 is also due to him.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Brzeziński, T. (2024). Special Normalised Affine Matrices: An Example of a Lie Affgebra. In: Kielanowski, P., Beltita, D., Dobrogowska, A., Goliński, T. (eds) Geometric Methods in Physics XL. WGMP 2022. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-62407-0_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-62407-0_9
Published:
Publisher Name: Birkhäuser, Cham
Print ISBN: 978-3-031-62406-3
Online ISBN: 978-3-031-62407-0
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)