Skip to main content

Special Normalised Affine Matrices: An Example of a Lie Affgebra

  • Conference paper
  • First Online:
Geometric Methods in Physics XL (WGMP 2022)

Part of the book series: Trends in Mathematics ((TM))

Included in the following conference series:

Abstract

The affine space of traceless complex matrices in which the sum of all elements in every row and every column is equal to one is presented as an example of an affine space with a Lie bracket or a Lie affgebra.

In memory of Anatol Odzijewicz

The research is partially supported by the National Science Centre, Poland, Grant no. 2019/35/B/ST1/01115

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The definition (18) is equivalent to say that \([x,y]= \zeta \triangleright _x y\), for all \(x,y\in {\mathbb A}\). The latter Lie bracket can be defined on any affine space, not necessarily one-dimensional one.

References

  1. S. Breaz, T. Brzeziński, B. Rybołowicz, P. Saracco, Heaps of modules and affine spaces, Annal. Mat. Pura Appl. 2023, https://doi.org/10.1007/s10231-023-01369-0

  2. S. Breaz, T. Brzeziński, B. Rybołowicz, P. Saracco, Heaps of modules: categorical aspects, Annal. Mat. Pura Appl. 203, 403–445, 2024.

    Article  Google Scholar 

  3. T. Brzeziński, Trusses: Between braces and rings. Trans. Amer. Math. Soc. 372, 4149–4176, 2019.

    Article  MathSciNet  Google Scholar 

  4. T. Brzeziński, Trusses: Paragons, ideals and modules. Journal of Pure and Applied Algebra 224, 106258, 2020.

    Article  MathSciNet  Google Scholar 

  5. T. Brzeziński, J. Papworth, Lie and Nijenhuis brackets on affine spaces, arXiv:2310.08979, 2023.

    Google Scholar 

  6. K. Grabowska, J. Grabowski, P. Urbański, Lie brackets on affine bundles, Bull. Belg. Math. Soc. Simon Stevin, 30, 683–704, 2023.

    MathSciNet  Google Scholar 

  7. K. Grabowska, J. Grabowski, P. Urbański, AV-differential geometry: Poisson and Jacobi structures, J. Geom. Phys.52, 398–446, 2004.

    Article  MathSciNet  Google Scholar 

  8. K. Grabowska, J. Grabowski, P. Urbański, Frame-independent mechanics: geometry on affine bundles, Travaux mathematiques. Fasc. XVI, 107–120, Trav. Math., 16, Univ. Luxemb., Luxembourg, 2005.

    Google Scholar 

  9. K. Grabowska, J. Grabowski, P. Urbański, AV-differential geometry: Euler-Lagrangian equations, J. Geom. Phys.57, 1984–1998, 2007.

    Google Scholar 

  10. H. Prüfer, Theorie der Abelschen Gruppen. I. Grundeigenschaften, Math. Z. 20:165–187, 1924.

    Google Scholar 

  11. W. Tulczyjew, Frame independence of analytical mechanics, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 119, 273–279, 1985.

    MathSciNet  Google Scholar 

Download references

Acknowledgements

I am grateful to Janusz Grabowski for suggesting to consider the Lie algebra hull of \(\mathrm {sna}{(n , {\mathbb C})}\). The interpretation of \(\mathcal {L}(\mathrm {sna}{(n , {\mathbb C})} ;\mathbf {o})\) as the Lie ideal (33) in the non-standard Lie algebra structure (32) on \(\mathrm {gl}{(n , {\mathbb C})}\) presented in Remark 7 is also due to him.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Brzeziński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brzeziński, T. (2024). Special Normalised Affine Matrices: An Example of a Lie Affgebra. In: Kielanowski, P., Beltita, D., Dobrogowska, A., Goliński, T. (eds) Geometric Methods in Physics XL. WGMP 2022. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-62407-0_9

Download citation

Publish with us

Policies and ethics