Abstract
The aim of the paper is to present the integrable systems on partial isometries which are related to the restricted Grassmannian in finite-dimensional context. Some explicit solutions are obtained.
This research was partially supported by joint National Science Centre, Poland (number 2020/01/Y/ST1/00123) and Fonds zur Förderung der wissenschaftlichen Forschung, Austria (number I 5015-N) grant “Banach Poisson–Lie groups and integrable systems.” The authors would like to thank the Erwin Schrödinger Institute for its hospitality during the thematic program “Geometry beyond Riemann: Curvature and Rigidity.”
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
D. Beltiţă, T. S. Ratiu, A. B. Tumpach: The restricted Grassmannian, Banach Lie–Poisson spaces, and coadjoint orbits. J. Funct. Anal., 247:138–168, 2007.
T. Goliński, G. Jakimowicz, A. Sliżewska: Banach Lie groupoid of partial isometries over restricted Grassmannian. arXiv:2404.12847v2 [math.DG], 2024.
T. Goliński, A. Odzijewicz: Some integrable systems on Banach Lie–Poisson space \(i\mathbb {R}\oplus \mathcal {U}^1_{\mathrm {res}}\). In XXVIII Workshop on Geometric Methods in Physics, AIP Conf. Proc., volume 1191 (edited by P. Kielanowski, et al.), pages 91–97. American Institute of Physics, 2009.
T. Goliński, A. Odzijewicz: Hierarchy of Hamilton equations on Banach Lie–Poisson spaces related to restricted Grassmannian. J. Funct. Anal., 258:3266–3294, 2010.
T. Goliński, A. Odzijewicz: Hierarchy of integrable Hamiltonians describing nonlinear n-wave interaction. J. Phys. A Math. Theor., 45(4):045204, 2012.
T. Goliński, A. B. Tumpach: Geometry of integrable systems related to the restricted Grassmannian. to appear, 2023.
A. Odzijewicz, T. S. Ratiu: Banach Lie–Poisson spaces and reduction. Comm. Math. Phys., 243:1–54, 2003.
A. Odzijewicz, T. S. Ratiu: Extensions of Banach Lie-Poisson spaces. J. Funct. Anal., 217:103–125, 2004.
A. Odzijewicz, A. Sliżewska: Banach–Lie groupoids associated to \(W^*\)-algebras. J. Sympl. Geom., 14:687–736, 2016.
A. Pressley, G. B. Segal: Loop Groups. Oxford Mathematical Monographs. Clarendon Press, Oxford, 1986.
A. B. Tumpach: Banach Poisson–Lie groups and Bruhat–Poisson structure of the restricted Grassmannian. Comm. Math. Phys., 373(3):795–858, 2020.
T. Wurzbacher: Fermionic second quantization and the geometry of the restricted Grassmannian. In Infinite Dimensional Kähler Manifolds, DMV Seminar, volume 31 (edited by A. Huckleberry, T. Wurzbacher). Birkhäuser, Basel, 2001.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Goliński, T., Tumpach, A.B. (2024). Integrable System on Partial Isometries: A Finite-Dimensional Picture. In: Kielanowski, P., Beltita, D., Dobrogowska, A., Goliński, T. (eds) Geometric Methods in Physics XL. WGMP 2022. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-62407-0_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-62407-0_5
Published:
Publisher Name: Birkhäuser, Cham
Print ISBN: 978-3-031-62406-3
Online ISBN: 978-3-031-62407-0
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)