Skip to main content

Integrable System on Partial Isometries: A Finite-Dimensional Picture

  • Conference paper
  • First Online:
Geometric Methods in Physics XL (WGMP 2022)

Part of the book series: Trends in Mathematics ((TM))

Included in the following conference series:

  • 50 Accesses

Abstract

The aim of the paper is to present the integrable systems on partial isometries which are related to the restricted Grassmannian in finite-dimensional context. Some explicit solutions are obtained.

This research was partially supported by joint National Science Centre, Poland (number 2020/01/Y/ST1/00123) and Fonds zur Förderung der wissenschaftlichen Forschung, Austria (number I 5015-N) grant “Banach Poisson–Lie groups and integrable systems.” The authors would like to thank the Erwin Schrödinger Institute for its hospitality during the thematic program “Geometry beyond Riemann: Curvature and Rigidity.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Beltiţă, T. S. Ratiu, A. B. Tumpach: The restricted Grassmannian, Banach Lie–Poisson spaces, and coadjoint orbits. J. Funct. Anal., 247:138–168, 2007.

    Article  MathSciNet  Google Scholar 

  2. T. Goliński, G. Jakimowicz, A. Sliżewska: Banach Lie groupoid of partial isometries over restricted Grassmannian. arXiv:2404.12847v2 [math.DG], 2024.

    Google Scholar 

  3. T. Goliński, A. Odzijewicz: Some integrable systems on Banach Lie–Poisson space \(i\mathbb {R}\oplus \mathcal {U}^1_{\mathrm {res}}\). In XXVIII Workshop on Geometric Methods in Physics, AIP Conf. Proc., volume 1191 (edited by P. Kielanowski, et al.), pages 91–97. American Institute of Physics, 2009.

    Google Scholar 

  4. T. Goliński, A. Odzijewicz: Hierarchy of Hamilton equations on Banach Lie–Poisson spaces related to restricted Grassmannian. J. Funct. Anal., 258:3266–3294, 2010.

    Article  MathSciNet  Google Scholar 

  5. T. Goliński, A. Odzijewicz: Hierarchy of integrable Hamiltonians describing nonlinear n-wave interaction. J. Phys. A Math. Theor., 45(4):045204, 2012.

    Google Scholar 

  6. T. Goliński, A. B. Tumpach: Geometry of integrable systems related to the restricted Grassmannian. to appear, 2023.

    Google Scholar 

  7. A. Odzijewicz, T. S. Ratiu: Banach Lie–Poisson spaces and reduction. Comm. Math. Phys., 243:1–54, 2003.

    Article  MathSciNet  Google Scholar 

  8. A. Odzijewicz, T. S. Ratiu: Extensions of Banach Lie-Poisson spaces. J. Funct. Anal., 217:103–125, 2004.

    Article  MathSciNet  Google Scholar 

  9. A. Odzijewicz, A. Sliżewska: Banach–Lie groupoids associated to \(W^*\)-algebras. J. Sympl. Geom., 14:687–736, 2016.

    Google Scholar 

  10. A. Pressley, G. B. Segal: Loop Groups. Oxford Mathematical Monographs. Clarendon Press, Oxford, 1986.

    Google Scholar 

  11. A. B. Tumpach: Banach Poisson–Lie groups and Bruhat–Poisson structure of the restricted Grassmannian. Comm. Math. Phys., 373(3):795–858, 2020.

    Article  MathSciNet  Google Scholar 

  12. T. Wurzbacher: Fermionic second quantization and the geometry of the restricted Grassmannian. In Infinite Dimensional Kähler Manifolds, DMV Seminar, volume 31 (edited by A. Huckleberry, T. Wurzbacher). Birkhäuser, Basel, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Goliński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goliński, T., Tumpach, A.B. (2024). Integrable System on Partial Isometries: A Finite-Dimensional Picture. In: Kielanowski, P., Beltita, D., Dobrogowska, A., Goliński, T. (eds) Geometric Methods in Physics XL. WGMP 2022. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-62407-0_5

Download citation

Publish with us

Policies and ethics