Skip to main content

Dissemination of Misinformation About COVID-19 on TikTok: A Multimodal Analysis

  • Conference paper
  • First Online:
HCI International 2024 Posters (HCII 2024)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2119))

Included in the following conference series:

  • 315 Accesses

Abstract

TikTok, a globally popular social media platform, that gained even more popularity amongst different age groups since the outbreak of COVID-19, has come under scrutiny in the recent past as the platform has significantly contributed to the dissemination of misinformation about COVID-19. Even though multiple works related to the analysis of misinformation about COVID-19 on social media have been published in the last few months, none of those works have focused on the analysis of misinformation by considering the user diversity and topics represented in TikTok videos. The work presented in this paper aims to address this research gap by presenting multiple novel findings from a comprehensive analysis of a dataset of TikTok videos containing different levels of misinformation (low, moderate, and high) about COVID-19. First, a diversity-based analysis showed that between male and female users of TikTok, males published a higher number of videos containing misinformation. Second, for videos containing low levels of misinformation, patients published a higher number of videos as compared to news sources or media outlets. Third, the analysis of the topics of these videos revealed multiple novel insights. For instance, for videos containing a moderate level of misinformation, the highest percentage of videos (18.889%) were videos that discussed the prevention of COVID-19. Finally, the average views, likes, and comments for videos with low levels of misinformation were found to be higher as compared to videos that contained moderate to high levels of misinformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ciotti, M., Ciccozzi, M., Terrinoni, A., Jiang, W.-C., Wang, C.-B., Bernardini, S.: The COVID-19 pandemic. Crit. Rev. Clin. Lab. Sci. 57, 365–388 (2020)

    Article  Google Scholar 

  2. Watkins, J.: Preventing a covid-19 pandemic. BMJ 368, m810 (2020)

    Article  Google Scholar 

  3. Liu, J., et al.: A comparative overview of COVID-19, MERS and SARS: review article. Int. J. Surg. 81, 1–8 (2020)

    Article  MathSciNet  Google Scholar 

  4. Hu, T., Liu, Y., Zhao, M., Zhuang, Q., Xu, L., He, Q.: A comparison of COVID-19. SARS and MERS. PeerJ. 8, e9725 (2020)

    Article  Google Scholar 

  5. COVID-19 cases: https://data.who.int/dashboards/covid19/cases. Last accessed 15 March 2024

  6. Bhadoria, P., Gupta, G., Agarwal, A.: Viral pandemics in the past two decades: an overview. J. Family Med. Prim. Care. 10, 2745 (2021)

    Article  Google Scholar 

  7. Grubaugh, N.D., et al.: Tracking virus outbreaks in the twenty-first century. Nat. Microbiol. 4, 10–19 (2018)

    Article  Google Scholar 

  8. Nii-Trebi, N.I., et al.: Dynamics of viral disease outbreaks: A hundred years (1918/19–2019/20) in retrospect ‐ Loses, lessons and emerging issues. Rev. Med. Virol. 33 (2023)

    Google Scholar 

  9. Thakur, N., Han, C.: An exploratory study of tweets about the SARS-CoV-2 Omicron variant: Insights from sentiment analysis, language interpretation, source tracking, type classification, and embedded URL detection. COVID. 2, 1026–1049 (2022)

    Article  Google Scholar 

  10. Gole, S., Tidke, B.: A survey of big data in social media using data mining techniques. In: 2015 International Conference on Advanced Computing and Communication Systems. pp. 1–6. IEEE

    Google Scholar 

  11. Haux, R.: Medical informatics: Past, present, future. Int. J. Med. Inform. 79, 599–610 (2010)

    Article  Google Scholar 

  12. Nawaz, M.S., Mustafa, R.U., Lali, M.I.U.: Role of online data from search engine and social media in healthcare informatics. In: Advances in Bioinformatics and Biomedical Engineering, pp. 272–293. IGI Global, Hershey, PA (2018)

    Google Scholar 

  13. Bello-Orgaz, G., Hernandez-Castro, J., Camacho, D.: A survey of social web mining applications for disease outbreak detection. In: Intelligent Distributed Computing VIII, pp. 345–356. Springer International Publishing, Cham (2015)

    Google Scholar 

  14. Thakur, N.: MonkeyPox2022Tweets: A large-scale Twitter dataset on the 2022 Monkeypox outbreak, findings from analysis of Tweets, and open research questions. Infect. Dis. Rep. 14, 855–883 (2022)

    Article  Google Scholar 

  15. Fernández-Luque, L., Bau, T.: Health and social media: perfect storm of information. Healthc. Inform. Res. 21, 67 (2015)

    Article  Google Scholar 

  16. Thakur, N.: Social media mining and analysis: a brief review of recent challenges. Information (Basel) 14, 484 (2023)

    Google Scholar 

  17. Schellewald, A.: Understanding the popularity and affordances of TikTok through user experiences. Media Cult. Soc. 45, 1568–1582 (2023)

    Article  Google Scholar 

  18. TikTok users worldwide 2027, https://www.statista.com/forecasts/1142687/tiktok-users-worldwide. Last accessed 14 March 2024

  19. Feldkamp, J.: The rise of TikTok: The evolution of a social media platform during COVID-19. In: Digital Responses to Covid-19, pp. 73–85. Springer International Publishing, Cham (2021)

    Google Scholar 

  20. Basch, C.H., Fera, J., Pellicane, A., Basch, C.E.: Handwashing videos on TikTok during the COVID-19 pandemic: potential for disease prevention and health promotion. Infect. Dis. Health. 27, 31–37 (2022)

    Article  Google Scholar 

  21. Lundy, M.: TikTok and COVID-19 vaccine misinformation: new avenues for misinformation spread, popular infodemic topics, and dangerous logical fallacies. Int. J. Commun. 17, 24 (2023)

    Google Scholar 

  22. Vraga, E.K., Bode, L.: Defining misinformation and understanding its bounded nature: using expertise and evidence for describing misinformation. Polit. Commun. 37, 136–144 (2020)

    Article  Google Scholar 

  23. Van der Linden, S.: Misinformation: susceptibility, spread, and interventions to immunize the public. Nat. Med. 28, 460–467 (2022)

    Article  Google Scholar 

  24. Del Vicario, M., et al.: The spreading of misinformation online. Proc. Natl. Acad. Sci. U. S. A. 113, 554–559 (2016)

    Article  Google Scholar 

  25. Skafle, I., Nordahl-Hansen, A., Quintana, D.S., Wynn, R., Gabarron, E.: Misinformation about COVID-19 vaccines on social media: Rapid review. J. Med. Internet Res. 24, e37367 (2022)

    Article  Google Scholar 

  26. Silva, M., et al.: People still care about facts: twitter users engage more with factual discourse than misinformation--A comparison between COVID and general narratives on Twitter

    Google Scholar 

  27. Sharma, K., Seo, S., Meng, C., Rambhatla, S., Liu, Y.: COVID-19 on social media: Analyzing misinformation in Twitter conversations (2020). http://arxiv.org/abs/2003.12309

  28. Ahmed, W., Vidal-Alaball, J., Downing, J., López Seguí, F.: COVID-19 and the 5G conspiracy theory: Social network analysis of Twitter data. J. Med. Internet Res. 22, e19458 (2020)

    Article  Google Scholar 

  29. Krittanawong, C., et al.: Misinformation dissemination in Twitter in the COVID-19 era. Am. J. Med. 133, 1367–1369 (2020)

    Article  Google Scholar 

  30. Singh, L., et al.: A first look at COVID-19 information and misinformation sharing on Twitter

    Google Scholar 

  31. Huang, B., Carley, K.M.: Disinformation and Misinformation on Twitter during the Novel Coronavirus Outbreak

    Google Scholar 

  32. Yang, K.-C., et al.: The COVID-19 Infodemic: Twitter versus Facebook. Big Data Soc. 8, 205395172110138 (2021)

    Article  Google Scholar 

  33. Broniatowski, D.A., et al.: Twitter and Facebook posts about COVID-19 are less likely to spread misinformation compared to other health topics. PLoS ONE 17, e0261768 (2022)

    Article  Google Scholar 

  34. Hossain, M.A., Chowdhury, M.M.H., Pappas, I.O., Metri, B., Hughes, L., Dwivedi, Y.K.: Fake news on Facebook and their impact on supply chain disruption during COVID-19. Ann. Oper. Res. 327, 683–711 (2023)

    Article  Google Scholar 

  35. Thakur, N., Pradhan, S., Han, C.Y.: Investigating the impact of COVID-19 on online learning-based web behavior (2022). http://arxiv.org/abs/2205.01060

  36. Mukhtar, K., Javed, K., Arooj, M., Sethi, A.: Advantages, limitations and recommendations for online learning during COVID-19 pandemic era: online learning during COVID-19 pandemic era. Pak. J. Med. Sci. Q. 36, S27 (2020)

    Google Scholar 

  37. Thakur, N.: A large-scale dataset of Twitter chatter about online learning during the current COVID-19 Omicron wave. Data (Basel) 7, 109 (2022)

    Google Scholar 

  38. Lemay, D.J., Bazelais, P., Doleck, T.: Transition to online learning during the COVID-19 pandemic. Comput. Hum. Behav. Rep. 4, 100130 (2021)

    Article  Google Scholar 

  39. Pranto, P.B., Navid, S.Z.-U.-H., Dey, P., Uddin, G., Iqbal, A.: Are you misinformed? A study of COVID-related fake news in Bengali on Facebook (2022). http://arxiv.org/abs/2203.11669

  40. Al-Zaman, M.S.: Social media and COVID-19 misinformation: how ignorant Facebook users are? Heliyon. 7, e07144 (2021)

    Article  Google Scholar 

  41. Ahmed, N., et al.: The COVID-19 infodemic: A quantitative analysis through Facebook. Cureus (2020)

    Google Scholar 

  42. Mejova, Y., Kalimeri, K.: COVID-19 on Facebook ads: Competing agendas around a public health crisis. In: Proceedings of the 3rd ACM SIGCAS Conference on Computing and Sustainable Societies. ACM, New York, NY, USA (2020)

    Google Scholar 

  43. Mori, E., Barabaschi, B., Cantoni, F., Virtuani, R.: Local governments’ communication through Facebook. Evidences from COVID‐19 pandemic in Italy. J. Public Aff. 21 (2021)

    Google Scholar 

  44. Guarino, S., Pierri, F., Di Giovanni, M., Celestini, A.: Information disorders during the COVID-19 infodemic: The case of Italian Facebook. Online Soc. Netw. Media. 22, 100124 (2021)

    Article  Google Scholar 

  45. Banker, S., Park, J.: Evaluating prosocial COVID-19 messaging frames: Evidence from a field study on Facebook. Judgm. Decis. Mak. 15, 1037–1043 (2020)

    Article  Google Scholar 

  46. Li, H.O.-Y., Bailey, A., Huynh, D., Chan, J.: YouTube as a source of information on COVID-19: a pandemic of misinformation? BMJ Glob. Health 5, e002604 (2020)

    Article  Google Scholar 

  47. Li, H.O.-Y., Pastukhova, E., Brandts-Longtin, O., Tan, M.G., Kirchhof, M.G.: YouTube as a source of misinformation on COVID-19 vaccination: a systematic analysis. BMJ Glob. Health. 7, e008334

    Google Scholar 

  48. Quinn, E.K., et al.: COVID-19 and vitamin D misinformation on YouTube: Content analysis. JMIR Infodemiology. 2, e32452 (2022)

    Article  Google Scholar 

  49. Röchert, D., Shahi, G.K., Neubaum, G., Ross, B., Stieglitz, S.: The networked context of COVID-19 misinformation: Informational homogeneity on YouTube at the beginning of the pandemic. Online Soc. Netw. Media. 26, 100164 (2021)

    Article  Google Scholar 

  50. Quinn, E.K., Fazel, S.S., Peters, C.E.: The Instagram infodemic: cobranding of conspiracy theories, coronavirus disease 2019 and authority-questioning beliefs. Cyberpsychol. Behav. Soc. Netw. 24, 573–577 (2021)

    Article  Google Scholar 

  51. Shang, L., Kou, Z., Zhang, Y., Wang, D.: A multimodal misinformation detector for COVID-19 short videos on TikTok. In: 2021 IEEE International Conference on Big Data (Big Data), pp. 899–908. IEEE (2021)

    Google Scholar 

  52. van Kampen, K., Laski, J., Herman, G., Chan, T.M.: Investigating COVID-19 vaccine communication and misinformation on TikTok: Cross-sectional study. JMIR Infodemiology. 2, e38316 (2022)

    Article  Google Scholar 

  53. Baghdadi, J.D., et al.: #Coronavirus on TikTok: user engagement with misinformation as a potential threat to public health behavior. JAMIA Open 6 (2023)

    Google Scholar 

  54. Sidorenko Bautista, P., Alonso López, N., Giacomelli, F.: Espacios de verificación en TikTok. Comunicación y formas narrativas para combatir la desinformación. Rev. Lat. Comun. Soc. 87–113

    Google Scholar 

  55. O’Sullivan, N.J., Nason, G., Manecksha, R.P., O’Kelly, F.: The unintentional spread of misinformation on ‘TikTok’; a pediatric urological perspective. J. Pediatr. Urol. 18, 371–375 (2022)

    Article  Google Scholar 

  56. Bhargava, P., MacDonald, K., Newton, C., Lin, H., Pennycook, G.: How effective are TikTok misinformation debunking videos? HKS Misinfo Review (2023)

    Google Scholar 

  57. Pandher, M., et al.: (324) TikTok’s misinformation about COVID-19 infections and vaccinations on male fertility. J. Sex. Med. 20 (2023)

    Google Scholar 

  58. Pandher, M., et al.: Mp45–18 misinformation on TikTok about the effect of covid-19 infections and vaccinations on male fertility. J. Urol. 209, (2023)

    Google Scholar 

  59. Sidorenko-Bautista, P., Herranz de la Casa, J.M., Cantero de Julián, J.I.: Use of new narratives for COVID-19 reporting: From 360o videos to ephemeral TikTok videos in online media. Trípodos. 1, 105–122 (2021)

    Google Scholar 

  60. Baghdadi, J., et al.: #Coronavirus on TikTok: User engagement with misinformation as a potential threat to public health behavior. https://doi.org/10.5061/DRYAD.BVQ83BKDP

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirmalya Thakur .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Patel, K.A., Thakur, N. (2024). Dissemination of Misinformation About COVID-19 on TikTok: A Multimodal Analysis. In: Stephanidis, C., Antona, M., Ntoa, S., Salvendy, G. (eds) HCI International 2024 Posters. HCII 2024. Communications in Computer and Information Science, vol 2119. Springer, Cham. https://doi.org/10.1007/978-3-031-61966-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61966-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61965-6

  • Online ISBN: 978-3-031-61966-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics