Skip to main content

Designing for AI Transparency in Public Services: A User-Centred Study of Citizens’ Preferences

  • Conference paper
  • First Online:
HCI in Business, Government and Organizations (HCII 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14720))

Included in the following conference series:

  • 251 Accesses

Abstract

Enhancing transparency in AI enabled public services has the potential to improve their adoption and service delivery. Hence, it is important to identify effective design strategies for AI transparency in public services. To this end, we conduct this empirical qualitative study providing insights for responsible deployment of AI in practice by public organizations. We design an interactive prototype for a Norwegian public welfare service organization which aims to use AI to support sick leaves related services. Qualitative analysis of citizens’ data collected through survey, think-aloud interactions with the prototype, and open-ended questions revealed three key themes related to: articulating information in written form, representing information in graphical form, and establishing the appropriate level of information detail for improving AI transparency in public service delivery. This study advances research pertaining to design of public service portals and has implications for AI implementation in the public sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.aljazeera.com/economy/2023/7/13/facial-recognition-surveillance-in-sao-paulo-could-worsen-racism.

  2. 2.

    https://pair.withgoogle.com/guidebook/chapters.

References

  1. Robinson, S.C.: Trust, transparency, and openness: how inclusion of cultural values shapes Nordic national public policy strategies for artificial intelligence (AI). Technol. Soc. 63, 101421 (2020)

    Article  Google Scholar 

  2. Ulnicane, I., Knight, W., Leach, T., Stahl, B.C., Wanjiku, W.G.: Governance of Artificial Intelligence: Emerging International Trends and Policy Frames: The Global Politics of Artificial Intelligence. Taylor & Francis, Milton Park, Oxfordshire (2022)

    Google Scholar 

  3. Schmager, S., Grøder, C.H., Parmiggiani, E., Pappas, I., Vassilakopoulou, P.: What do citizens think of AI adoption in public services? Exploratory research on citizen attitudes through a social contract lens. In: Proceedings of the 56th Hawaii International Conference on System Sciences (2023)

    Google Scholar 

  4. Kuziemski, M., Misuraca, G.: AI governance in the public sector: three tales from the frontiers of automated decision-making in democratic settings. Telecommun. Policy 44(6), 101976 (2020)

    Article  Google Scholar 

  5. Höchtl, J., Parycek, P., Schöllhammer, R.: Big data in the policy cycle: policy decision making in the digital era. J. Organ. Comput. Electron. Commer. 26(1–2), 147–169 (2016)

    Article  Google Scholar 

  6. Molnar, P.: Technology on the margins: AI and global migration management from a human rights perspective. Camb. Int. Law J. 8(2), 305–330 (2019)

    Article  Google Scholar 

  7. Lopez, P.: Bias does not equal bias: a socio-technical typology of bias in data-based algorithmic systems. Internet Policy Rev. 10(4), 1–29 (2021)

    Article  Google Scholar 

  8. Zhang, P., Nah, F.F.H., Benbasat, I.: Human-computer interaction research in management information systems. J. Manag. Inf. Syst. 22(3), 9–14 (2005)

    Article  Google Scholar 

  9. Tiwari, A.A., Gupta, S., Zamani, E.D., Mittal, N., Agarwal, R.: An overarching conceptual framework for ICT-enabled responsive governance. Inf. Syst. Front. (2023). https://doi.org/10.1007/s10796-023-10415-4

    Article  Google Scholar 

  10. Matheus, R., Janssen, M., Janowski, T.: Design principles for creating digital transparency in government. Gov. Inf. Q. 38(1), 101550 (2021)

    Article  Google Scholar 

  11. Persson, P., Zhang, Y., Asatiani, A., Lindman, J., Rudmark, D.: Toward citizen-centered digital government: design principles guided legacy system renewal in a Swedish municipality (2024)

    Google Scholar 

  12. Kassen, M.: Understanding transparency of government from a Nordic perspective: open government and open data movement as a multidimensional collaborative phenomenon in Sweden. J. Glob. Inf. Technol. Manag. 20(4), 236–275 (2017)

    Google Scholar 

  13. Vidaver-Cohen, D., Brønn, P.S.: Reputation, responsibility, and stakeholder support in Scandinavian firms: a comparative analysis. J. Bus. Ethics 127, 49–64 (2015)

    Article  Google Scholar 

  14. Grimmelikhuijsen, S., Porumbescu, G., Hong, B., Im, T.: The effect of transparency on trust in government: a cross-national comparative experiment. Public Adm. Rev. 73(4), 575–586 (2013)

    Article  Google Scholar 

  15. Felzmann, H., Villaronga, E.F., Lutz, C., Tamò-Larrieux, A.: Transparency you can trust: transparency requirements for artificial intelligence between legal norms and contextual concerns. Big Data Soc. 6(1), 2053951719860542 (2019)

    Article  Google Scholar 

  16. Gupta, S., Jain, G., Tiwari, A.A.: Polarised social media discourse during COVID-19 pandemic: evidence from YouTube. Behav. Inf. Technol. 42(2), 227–248 (2023)

    Article  Google Scholar 

  17. Kaur, K., Gupta, S.: Towards dissemination, detection and combating misinformation on social media: a literature review. J. Bus. Ind. Mark. 38(8), 1656–1674 (2023)

    Article  Google Scholar 

  18. Qureshi, I., Bhatt, B., Gupta, S., Tiwari, A.A.: Introduction to the role of information and communication technologies in polarization. In: Qureshi, I., Bhatt, B., Gupta, S., Tiwari, A.A. (eds.) Causes and Symptoms of Socio-Cultural Polarization, pp. 1–23. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-5268-4_1

    Chapter  Google Scholar 

  19. Fung, A.: Infotopia: unleashing the democratic power of transparency. Polit. Soc. 41(2), 183–212 (2013)

    Article  Google Scholar 

  20. Luna-Reyes, L.F., Bertot, J.C., Mellouli, S.: Open government, open data and digital government. Gov. Inf. Q. 31(1), 4–5 (2014)

    Article  Google Scholar 

  21. Conradie, P., Choenni, S.: On the barriers for local government releasing open data. Gov. Inf. Q. 31, S10–S17 (2014)

    Article  Google Scholar 

  22. Janssen, M., Charalabidis, Y., Zuiderwijk, A.: Benefits, adoption barriers and myths of open data and open government. Inf. Syst. Manag. 29(4), 258–268 (2012)

    Article  Google Scholar 

  23. Kitchin, R., Lauriault, T.P., McArdle, G.: Knowing and governing cities through urban indicators, city benchmarking and real-time dashboards. Reg. Stud. Reg. Sci. 2(1), 6–28 (2015)

    Google Scholar 

  24. Saldanha, D.M.F., Dias, C.N., Guillaumon, S.: Transparency and accountability in digital public services: learning from the Brazilian cases. Gov. Inf. Q. 39(2), 101680 (2022)

    Article  Google Scholar 

  25. Vössing, M., Kühl, N., Lind, M., Satzger, G.: Designing transparency for effective human-AI collaboration. Inf. Syst. Front. 24(3), 877–895 (2022)

    Article  Google Scholar 

  26. Zamani, E.D., Smyth, C., Gupta, S., Dennehy, D.: Artificial intelligence and big data analytics for supply chain resilience: a systematic literature review. Ann. Oper. Res. 327(2), 605–632 (2023)

    Article  Google Scholar 

  27. Vassilakopoulou, P., Haug, A., Salvesen, L.M., Pappas, I.O.: Developing human/AI interactions for chat-based customer services: lessons learned from the Norwegian government. Eur. J. Inf. Syst. 32(1), 10–22 (2023)

    Article  Google Scholar 

  28. Kieslich, K., Keller, B., Starke, C.: Artificial intelligence ethics by design. Evaluating public perception on the importance of ethical design principles of artificial intelligence. Big Data & Soc. 9(1), 20539517221092956 (2022)

    Google Scholar 

  29. van Veenstra, A.F., Grommé, F., Djafari, S.: The use of public sector data analytics in the Netherlands. Trans Gov. People Process Policy 15(4), 396–419 (2020)

    Google Scholar 

  30. Bekker, S.: Fundamental rights in digital welfare states: The case of SyRI in the Netherlands. In: Spijkers, O., Werner, W.G., Wessel, R.A. (eds.) Netherlands Yearbook of International Law 2019. NYIL, vol. 50, pp. 289–307. T.M.C. Asser Press, The Hague (2021). https://doi.org/10.1007/978-94-6265-403-7_24

    Chapter  Google Scholar 

  31. Van Bekkum, M., Borgesius, F.Z.: Digital welfare fraud detection and the Dutch SyRI judgment. Eur. J. Soc. Secur. 23(4), 323–340 (2021)

    Article  Google Scholar 

  32. Henman, P.: Improving public services using artificial intelligence: possibilities, pitfalls, governance. Asia Pac. J Public Adm. 42(4), 209–221 (2020)

    Google Scholar 

  33. Schwartz, S.: A theory of cultural value orientations: explication and applications. Comp. Sociol. 5(2–3), 137–182 (2006)

    Article  Google Scholar 

  34. van Berkel, N., Papachristos, E., Giachanou, A., Hosio, S., Skov, M.B.: A systematic assessment of national artificial intelligence policies: perspectives from the Nordics and beyond. In: Proceedings of the 11th Nordic conference on Human-Computer Interaction: Shaping Experiences, Shaping Society, pp. 1–12 (2020)

    Google Scholar 

  35. Haddad, S., McGrenere, J., Jacova, C.: Interface design for older adults with varying cultural attitudes toward uncertainty. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1913–1922 (2014)

    Google Scholar 

  36. Kulesz, O.: Culture, platforms and machines: the impact of artificial intelligence on the diversity of cultural expressions. Intergovernmental Committee Prot. Promot. Diversity Cult. Expr. 12 (2018)

    Google Scholar 

  37. Abdul, A., Vermeulen, J., Wang, D., Lim, B.Y., Kankanhalli, M.: Trends and trajectories for explainable, accountable and intelligible systems: an HCI research agenda. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI ’18). Association for Computing Machinery, New York, NY, USA, Article 582 (2018)

    Google Scholar 

  38. Cook, T.E., Gronke, P.: The skeptical American: revisiting the meanings of trust in government and confidence in institutions. J. Politics 67(3), 784–803 (2005)

    Google Scholar 

  39. Bannister, F., Connolly, R.: The trouble with transparency: a critical review of openness in e‐government. Policy Internet 3(1), 1–30 (2011)

    Google Scholar 

  40. Heald, D.: Varieties of transparency. In: Heald, D. (ed.) Transparency: the key to better governance? British Academy (2006). https://doi.org/10.5871/bacad/9780197263839.003.0002

    Chapter  Google Scholar 

  41. Im, T., Cho, W., Porumbescu, G., Park, J.: Internet, trust in government, and citizen compliance. J. Public Adm. Res. Theory 24(3), 741–763 (2014)

    Article  Google Scholar 

  42. Chen, C.P., Zhang, C.Y.: Data-intensive applications, challenges, techniques and technologies: a survey on Big Data. Inf. Sci. 275, 314–347 (2014)

    Article  Google Scholar 

  43. Dexe, J., Franke, U.: Nordic lights? National AI policies for doing well by doing good. J. Cyber Policy 5(3), 332–349 (2020)

    Article  Google Scholar 

  44. Stani, E., Barthélemy, F., Raes, K., Pittomvils, M., Rodriguez, M.A.: How data vocabulary standards enhance the exchange of information exposed through APIs: the case of public service descriptions. In: Proceedings of the 13th International Conference on Theory and Practice of Electronic Governance, pp. 807–810 (2020)

    Google Scholar 

  45. Asatiani, A., Malo, P., Nagbøl, P.R., Penttinen, E., Rinta-Kahila, T., Salovaara, A.: Sociotechnical envelopment of artificial intelligence: an approach to organizational deployment of inscrutable artificial intelligence systems. J. Assoc. Inf. Syst. (JAIS) 22(2), 325–252 (2021)

    Google Scholar 

  46. Wirtz, B.W., Langer, P.F., Fenner, C.: Artificial intelligence in the public sector-a research agenda. Int. J. Public Adm. 44(13), 1103–1128 (2021)

    Article  Google Scholar 

  47. Mikalef, P., et al.: Enabling AI capabilities in government agencies: a study of determinants for European municipalities. Gov. Inf. Q. 39(4), 101596 (2022)

    Google Scholar 

  48. Sein, M.K., Henfridsson, O., Purao, S., Rossi, M., Lindgren, R.: Action design research. MIS Q., 37-56 (2011).https://doi.org/10.2307/23043488

  49. Schmager, S., Pappas, I., Vassilakopoulou, P.: Defining human-centered AI: a comprehensive review of HCAI literature. In: Proceedings of the 2023 Mediterranean Conference on Information Systems (2023)

    Google Scholar 

  50. Creswell, J.W., Poth, C.N.: Qualitative Inquiry and Research Design: Choosing Among Five Approaches. Sage publications. Thousand Oaks, California (2016)

    Google Scholar 

  51. Marshall, B., Cardon, P., Poddar, A., Fontenot, R.: Does sample size matter in qualitative research? A review of qualitative interviews in IS research. J. Comput. Inf. Syst. 54(1), 11–22 (2013)

    Google Scholar 

  52. Faulkner, L.: Beyond the five-user assumption: benefits of increased sample sizes in usability testing. Behav. Res. Methods Instrum. Comput. 35, 379–383 (2003)

    Article  Google Scholar 

  53. Ericsson, K.A., Simon, H.A.: Verbal reports as data. Psychol. Rev. 87(3), 215 (1980)

    Article  Google Scholar 

  54. Miah, S.J., Gammack, J.G.: Ensemble artifact design for context sensitive decision support. Australas. J. Inf. Syst. 18(2), 5–20 (2014)

    Google Scholar 

  55. Shneiderman, B.: Human-centered artificial intelligence: reliable, safe & trustworthy. Int. J. Hum. Comput. Interact. 36(6), 495–504 (2020)

    Article  Google Scholar 

  56. Auernhammer, J.: Human-centered AI: the role of Human-centered design research. In: Boess, S., Cheung, M. Cain, R. (eds.), The Development of AI Synergy - DRS International Conference (2020)

    Google Scholar 

  57. Ehsan, U., Riedl, M.O.: Human-centered explainable AI: towards a reflective sociotechnical approach. In: Stephanidis, C., Kurosu, M., Degen, H., Reinerman-Jones, L. (eds.) HCII 2020. LNCS, vol. 12424, pp. 449–466. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60117-1_33

    Chapter  Google Scholar 

  58. Schmager, S.: From commercial agreements to the social contract: human-centered AI guidelines for public services. In: The 14th Mediterranean Conference on Information Systems (MCIS), Catanzaro, Italy (2022)

    Google Scholar 

  59. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  60. Vassilakopoulou, P.: Sociotechnical approach for accountability by design in AI systems. In: 2020 European Conference on Information Systems, ECIS (2020)

    Google Scholar 

  61. Thiebes, S., Lins, S., Sunyaev, A.: Trustworthy artificial intelligence. Electron. Mark. 31, 447–464 (2021)

    Article  Google Scholar 

  62. Vassilakopoulou, P., Parmiggiani, E, Shollo, A., Grisot, M.: Responsible AI: concepts, critical perspectives and an information systems research agenda. Scand. J. Inf. Syst. 34(2) (2022)

    Google Scholar 

  63. Akbarighatar, P., Pappas, I., Vassilakopoulou, P.: A sociotechnical perspective for responsible AI maturity models: findings from a mixed-method literature review. Int. J. Inf. Manage. Data Insights 3(2), 100193 (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samrat Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schmager, S., Gupta, S., Pappas, I., Vassilakopoulou, P. (2024). Designing for AI Transparency in Public Services: A User-Centred Study of Citizens’ Preferences. In: Nah, F.FH., Siau, K.L. (eds) HCI in Business, Government and Organizations. HCII 2024. Lecture Notes in Computer Science, vol 14720. Springer, Cham. https://doi.org/10.1007/978-3-031-61315-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61315-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61314-2

  • Online ISBN: 978-3-031-61315-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics