Abstract
Open data is widely recognized for its potential positive impact on society and economy. However, many open data sets remain underutilized because users, such as civil servants and citizens, lack the necessary technical and analytical skills. Additionally, existing open data portals often fall short of providing user-friendly access to data. Although conversational agents equipped with Large Language Models have emerged as a promising solution to address these challenges, it is unclear how to design Large Language Model based open data assistants that allow users to formulate their information needs in natural language and ultimately use open data effectively. To address this gap, we undertake a Design Science Research project guided by the theory of effective use. In this first cycle of the project, we present meta-requirements and propose initial design principles on how to design a Large Language Model based open data assistant for effective use. Subsequently, we instantiate our principles in a prototype and evaluate it in a focus group with experts from a medium-sized German city. Our results contribute design knowledge in the form of design principles for open data assistants and inform future design cycles of our Design Science Research project.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Attard, J., Orlandi, F., Scerri, S., Auer, S.: A systematic review of open government data initiatives. Gov. Inf. Q. 32(4), 399–418 (2015). https://doi.org/10.1016/j.giq.2015.07.006
Bran, A.M., Cox, S., Schilter, O., Baldassari, C., White, A.D., Schwaller, P.: ChemCrow: augmenting large-language models with chemistry tools, October 2023. https://doi.org/10.48550/arXiv.2304.05376
Burton-Jones, A., Grange, C.: From use to effective use: a representation theory perspective. Inf. Syst. Res. 24(3), 632–658 (2013). https://doi.org/10.1287/isre.1120.0444
Christian Stocker: Ask ZüriCityGPT anything about the government and administration of the City of Zurich, June 2023. https://www.liip.ch/en/blog/askzuricitygpt-anything-about-the-government-of-the-city-of-zurich
Conradie, P., Choenni, S.: On the barriers for local government releasing open data. Gov. Inf. Q. 31, 10–17 (2014). https://doi.org/10.1016/j.giq.2014.01.003
Diederich, S., Brendel, A., Morana, S., Kolbe, L.: On the design of and interaction with conversational agents: an organizing and assessing review of human computer interaction research. J. Assoc. Inf. Syst. (2022). https://doi.org/10.17705/1jais.00724
European Commission: Riding the wave How Europe can gain from the rising tide of scientific data Final report of the High Level Expert Group on Scientific Data. European Commission, January 2010
European Parliament: Directive (EU) 2019/1024 of the European Parliament and of the Council of 20 June 2019 on open data and the re-use of public sector information (recast), June 2019. http://data.europa.eu/eli/dir/2019/1024/oj/eng
European Union: The official portal for European data. https://data.europa.eu/en
Frauenhofer DPS: FragDenStaat Analytics. https://publicanalytics.fokus.fraunhofer.de/fragdenstaat/dashboard
German Federal Ministry of the Interior and Community: Informationsfreiheitsgesetz. https://www.bmi.bund.de/DE/themen/moderne-verwaltung/opengovernment/informationsfreiheitsgesetz/informationsfreiheitsgesetz-artikel.html
Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28(1), 75–105 (2004). https://doi.org/10.2307/25148625
del Hoyo-Alonso, R., Rodrigalvarez-Chamarro, V., Vea-MurgÃa, J., Zubizarreta, I., Moyano-Collado, J.: Aragón open data assistant, lesson learned of an intelligent assistant for open data access. In: Følstad, A., et al. (eds.) Chatbot Research and Design. CONVERSATIONS 2023. LNCS, vol. 14524, pp. 42–57. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-54975-5_3
Hu, K., Hu, K.: ChatGPT sets record for fastest-growing user base - analyst note. Reuters, February 2023. https://www.reuters.com/technology/chatgpt-setsrecord-fastest-growing-user-base-analyst-note-2023-02-01/
Janssen, M., Charalabidis, Y., Zuiderwijk, A.: Benefits, adoption barriers and myths of open data and open government. Inf. Syst. Manag. 29(4), 258–268 (2012). https://doi.org/10.1080/10580530.2012.716740
Jiang, J., Zhou, K., Dong, Z., Ye, K., Zhao, W.X., Wen, J.R.: StructGPT: a general framework for large language model to reason over structured data, October 2023. https://doi.org/10.48550/arXiv.2305.09645
Karpas, E., et al.: MRKL systems: a modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning, May 2022. https://doi.org/10.48550/arXiv.2205.00445
Keyner, S., Savenkov, V., Vakulenko, S.: Open data Chatbot. In: Hitzler, P., et al. (eds.) The Semantic Web: ESWC 2019 Satellite Events. ESWC 2019. LNCS, vol. 11762, pp. 111–115. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32327-1_22
Kuechler, W., Vaishnavi, V.: On theory development in design science research: anatomy of a research project. EJIS 17, 489–504 (2008)
LangChain Inc: LangChain Docs. https://python.langchain.com/docs
Lewis, P., et al.: Retrieval-augmented generation for knowledge-intensive NLP tasks. In: Advances in Neural Information Processing Systems, vol. 33, pp. 9459–9474 (2020)
Lourenco, R.P.: An analysis of open government portals: a perspective of transparency for accountability. Gov. Inf. Q. 32(3), 323–332 (2015). https://doi.org/10.1016/j.giq.2015.05.006
McTear, M., Callejas, Z., Griol, D.: The Conversational Interface. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32967-3
Murray-Rust, P.: Open Data in Science. Nature Precedings, p. 1, January 2008. https://doi.org/10.1038/npre.2008.1526.1, publisher: Nature Publishing Group
Orszag, P.: Open Government Directive (2009). http://www.whitehouse.gov/open/documents/opengovernment-directive
Purwanto, A., Zuiderwijk, A., Janssen, M.: Citizen engagement with open government data: a systematic literature review of drivers and inhibitors. Int. J. Electron. Gov. Res. 16(3), 1–25 (2020). https://doi.org/10.4018/IJEGR.2020070101
Quarati, A., De Martino, M.: Open government data usage: a brief overview. In: Proceedings of the 23rd International Database Applications & Engineering Symposium. pp. 1–8. IDEAS ’19, June 2019. https://doi.org/10.1145/3331076.3331115
Rajkumar, N., Li, R., Bahdanau, D.: Evaluating the Text-to-SQL Capabilities of Large Language Models, March 2022. https://doi.org/10.48550/arXiv.2204.00498
Ruijer, E., Grimmelikhuijsen, S., Meijer, A.: Open data for democracy: developinga theoretical framework for open data use. Gov. Inf. Q. 34(1), 45–52 (2017). https://doi.org/10.1016/j.giq.2017.01.001
Ruoff, M., Gnewuch, U., Maedche, A., Scheibehenne, B.: Designing conversational dashboards for effective use in crisis response. J. Assoc. Inf. Syst. 24(6), 1500–1526 (2023). https://doi.org/10.17705/1jais.00801
Sadiq, S., Indulska, M.: Open data: quality over quantity. Int. J. Inf. Manag. 37(3), 150–154 (2017). https://doi.org/10.1016/j.ijinfomgt.2017.01.003
Safarov, I., Meijer, A., Grimmelikhuijsen, S.: Utilization of open government data: a systematic literature review of types, conditions, effects and users. Inf. Polity 22, 1–24 (2017). https://doi.org/10.3233/IP-160012
Streamlit Inc.: Streamlit Docs. https://docs.streamlit.io/
United Nations General Assembly: Universal Declaration of Human Rights (1948). https://www.un.org/en/about-us/universal-declaration-of-human-rights
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017)
Venable, J., Pries-Heje, J., Baskerville, R.: FEDS: a framework for evaluation in design science research. Eur. J. Inf. Syst. 25(1), 77–89 (2016). https://doi.org/10.1057/ejis.2014.36
Wang, D., Richards, D., Bilgin, A.A., Chen, C.: Implementation of a conversational virtual assistant for open government data portal: effects on citizens. J. Inf. Sci. (2023).https://doi.org/10.1177/01655515221151140, publisher:SAGEPublicationsLtd
Weerakkody, V., Irani, Z., Kapoor, K., Sivarajah, U., Dwivedi, Y.K.: Open data and its usability: an empirical view from the Citizen’s perspective. Inf. Syst. Front. 19(2), 285–300 (2017). https://doi.org/10.1007/s10796-0169679-1
Wei, J., et al.: Emergent Abilities of Large Language Models, October 2022. https://doi.org/10.48550/arXiv.2206.07682
Wei, J., et al.: Chain-of-thought prompting elicits reasoning in large language models. Adv. Neural. Inf. Process. Syst. 35, 24824–24837 (2022)
Weizenbaum, J.: ELIZA—a computer program for the study of natural language communication between man and machine. Commun. ACM 9(1), 36–45 (1966). https://doi.org/10.1145/365153.365168
Yao, S., et al.: ReAct: Synergizing Reasoning and Acting in Language Models, March 2023. https://doi.org/10.48550/arXiv.2210.03629
Zuiderwijk, A., Janssen, M., Choenni, S., Meijer, R., Sheikh Alibaks, R.: Socio technical impediments of open data. Electron. J. eGov. 10, 156–172 (2012)
Zuiderwijk, A., Janssen, M., Dwivedi, Y.K.: Acceptance and use predictors of open data technologies: drawing upon the unified theory of acceptance and use of technology. Gov. Inf. Q. 32(4), 429–440 (2015). https://doi.org/10.1016/j.giq.2015.09.005
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Schelhorn, T.C., Gnewuch, U., Maedche, A. (2024). Designing a Large Language Model Based Open Data Assistant for Effective Use. In: Mandviwalla, M., Söllner, M., Tuunanen, T. (eds) Design Science Research for a Resilient Future. DESRIST 2024. Lecture Notes in Computer Science, vol 14621. Springer, Cham. https://doi.org/10.1007/978-3-031-61175-9_27
Download citation
DOI: https://doi.org/10.1007/978-3-031-61175-9_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-61174-2
Online ISBN: 978-3-031-61175-9
eBook Packages: Computer ScienceComputer Science (R0)