Skip to main content

Comparison of the Accuracy of Markerless Motion Analysis and Optoelectronic System for Measuring Lower Limb Gait Kinematics

  • Conference paper
  • First Online:
Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management (HCII 2024)

Abstract

Background: Marker-based Optical motion tracking is the gold standard in gait analysis, for their detailed biomechanical modelling and accuracy. Today, in light of developing remote telemonitoring applications, markerless solutions are growing rapidly. Algorithms like Openpose can track human movement from a video. However, only few papers assess the validity of gait analysis using Openpose.

Objective: The purpose of this study was to assess the Openpose reliability to measure kinematics and spatiotemporal gait parameters and to evaluate the minimum technical requirements.

Methods: This analysis used video and optoelectronic motion capture simultaneously recorded. We assessed 4 healthy adults. To compare the accuracy of Openpose respect to optoelectronic system we computed the following indexes: the absolute error (AE) for spatiotemporal parameters and lower limbs kin, the lower limbs Range (ROM) of Motion’s intraclass correlation coefficients (ICC), the cross-correlation coefficients (CCC) of normalized gait cycle joint angles computed with two systems.

Results: The spatiotemporal parameter showed an ICC between good to excellent and the absolute error was very small: cadence AE < 0.56 step/min, Mean Velocity AE < 0.11 m/s, Stride length AE < 0.14 cm. The ROM of the lower limbs during gait showed a good to excellent agreement in the sagittal plane.

Also the normalized gait cycle CCC value shown a strong coupling in the sagittal plane.

Conclusion: We found Openpose to be accurate and reliably for sagittal plane gait kinematics and for spatiotemporal gait parameters in healthy adults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Disclosure of Interests

No conflict of interest exists. The authors wish to confirm that there are no known conflicts of interest associated with this publication and there has been no financial support for this work that could have influenced its outcome.

References

  1. Ma’touq, J. , Hu, T., Haddadin, S.: Sub-millimetre accurate human hand kinematics: from surface to skeleton. Comput. Methods Biomech. Biomed. Eng. 21(2), 113–128 (2018). https://doi.org/10.1080/10255842.2018.1425996

  2. Cappozzo, A., Della Croce, U., Leardini, A., Chiari, L.: Human movement analysis using stereophotogrammetry. Part 1: theoretical background. Gait Posture 21(2), 186–196 (2005). https://doi.org/10.1016/j.gaitpost.2004.01.010

  3. Washabaugh, E.P., Shanmugam, T.A., Ranganathan, R., Krishnan, C.: Comparing the accuracy of open-source pose estimation methods for measuring gait kinematics. Gait Posture 97, 188–195 (2022). https://doi.org/10.1016/j.gaitpost.2022.08.008

    Article  Google Scholar 

  4. Viehweger, E., et al.: Influence of clinical and gait analysis experience on reliability of observational gait analysis (Edinburgh Gait Score Reliability). Ann. Phys. Rehabil. Med. 53(9), 535–546 (2010). https://doi.org/10.1016/j.rehab.2010.09.002

    Article  Google Scholar 

  5. Brunnekreef, J.J., Van Uden, C.J.T., Van Moorsel, S., Kooloos, J.G.M.: Reliability of videotaped observational gait analysis in patients with orthopedic impairments. BMC Musculoskelet. Disord. 6, 1–9 (2005). https://doi.org/10.1186/1471-2474-6-17

    Article  Google Scholar 

  6. Baker, R.: Gait analysis methods in rehabilitation. J. Neuroeng. Rehabil. 3, 1 (2006). https://doi.org/10.1186/1743-0003-3-4

    Article  Google Scholar 

  7. Winter, D.A.: Biomechanics and Motor Control of Human Movement, 4th edn. (2009). https://doi.org/10.1002/9780470549148

  8. N.P. Access, A. M. J. B. A. manuscript; available in P. 2016 F. 05. P. in final edited form as: J. B. 2015 F. 5; 48(3), 544–548. https://doi.org/10.1016/j.jbiomech.2014.11.048. Krishnan, C., Washabaugh, E.P., Seetharaman, Y: A low cost real-time motion tracking approach using webcam technology. J. Biomech. 48(3), 544–548 (2015). https://doi.org/10.1016/j.jbiomech.2014.11.048.A

  9. Colyer, S.L., Evans, M., Cosker, D.P., Salo, A.I.T.: A review of the evolution of vision-based motion analysis and the integration of advanced computer vision methods towards developing a markerless system. Sport. Med. Open 4(1), 24 (2018)

    Google Scholar 

  10. Tanaka, R., Takimoto, H., Yamasaki, T., Higashi, A.: Validity of time series kinematical data as measured by a markerless motion capture system on a flatland for gait assessment. J. Biomech. 71, 281–285 (2018). https://doi.org/10.1016/j.jbiomech.2018.01.035

    Article  Google Scholar 

  11. Clark, R.A., Mentiplay, B.F., Hough, E., Pua, Y.H.: Three-dimensional cameras and skeleton pose tracking for physical function assessment: a review of uses, validity, current developments and Kinect alternatives. Gait Posture 68, 193–200 (2019). https://doi.org/10.1016/j.gaitpost.2018.11.029

    Article  Google Scholar 

  12. Mentiplay, B.F., et al.: Gait assessment using the Microsoft Xbox One Kinect: concurrent validity and inter-day reliability of spatiotemporal and kinematic variables. J. Biomech. 48(10), 2166–2170 (2015). https://doi.org/10.1016/j.jbiomech.2015.05.021

    Article  Google Scholar 

  13. Pfister, A., West, A.M., Bronner, S., Noah, J.A.: Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait analysis. J. Med. Eng. Technol. 38(5), 274–280 (2014). https://doi.org/10.3109/03091902.2014.909540

    Article  Google Scholar 

  14. Springer, S., Seligmann, G.Y.: Validity of the kinect for gait assessment: a focused review. Sensors 16(2), 1–13 (2016). https://doi.org/10.3390/s16020194

    Article  Google Scholar 

  15. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: Proceedings of the - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, January 2017, pp. 1302–1310, (2017). https://doi.org/10.1109/CVPR.2017.143

  16. Gu, X., Deligianni, F., Lo, B., Chen, W., Yang, G.Z.: Markerless gait analysis based on a single RGB camera. In: 2018 IEEE 15th International Conference on Wearable and Implantable Body Sensor Networks, BSN 2018, March 2018, pp. 42–45 (2018). https://doi.org/10.1109/BSN.2018.8329654

  17. Yamamoto, M., Shimatani, K., Hasegawa, M., Kurita, Y., Ishige, Y., Takemura, H.: Accuracy of temporo-spatial and lower limb joint kinematics parameters using openpose for various gait patterns with orthosis. IEEE Trans. Neural Syst. Rehabil. Eng. 29, 2666–2675 (2021). https://doi.org/10.1109/TNSRE.2021.3135879

    Article  Google Scholar 

  18. Stenum, J., Rossi, C., Roemmich, R.T.: Two-dimensional video-based analysis of human gait using pose estimation. PLoS Comput. Biol. 17(4) (2021). https://doi.org/10.1371/journal.pcbi.1008935

  19. Mehdizadeh, S., Nabavi, H., Sabo, A., Arora, T., Iaboni, A., Taati, B.: Concurrent validity of human pose tracking in video for measuring gait parameters in older adults: a preliminary analysis with multiple trackers, viewing angles, and walking directions. J. Neuroeng. Rehabil. 18(1), 1–16 (2021). https://doi.org/10.1186/s12984-021-00933-0

    Article  Google Scholar 

  20. Ota, M., Tateuchi, H., Hashiguchi, T., Ichihashi, N. : Verification of validity of gait analysis systems during treadmill walking and running using human pose tracking algorithm. Gait Posture 85, 290–297 (2021). https://doi.org/10.1016/j.gaitpost.2021.02.006

  21. Guo, R., Shao, X., Zhang, C., Qian, X.: Sparse adaptive graph convolutional network for leg agility assessment in Parkinson’s disease. IEEE Trans. Neural Syst. Rehabil. Eng. 28(12), 2837–2848 (2020). https://doi.org/10.1109/TNSRE.2020.3039297

    Article  Google Scholar 

  22. Chen, G., Patten, C., Kothari, D.H., Zajac, F.E.: Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait Posture 22(1), 51–56 (2005). https://doi.org/10.1016/j.gaitpost.2004.06.009

    Article  Google Scholar 

  23. Duffell, L.D., Jordan, S.J., Cobb, J.P., McGregor, A.H.: Gait adaptations with aging in healthy participants and people with knee-joint osteoarthritis. Gait Posture 57, 246–251 (2017). https://doi.org/10.1016/j.gaitpost.2017.06.015

  24. Gage, J.R., Davis III, R.B., Õunpuu, S., Tyburski, D.: A gait analysis data collection and reduction technique (i), 1–23 (2016)

    Google Scholar 

  25. Zeni, J.A., Richards, J.G., Higginson, J.S.: Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Posture 27(4), 710–714 (2008). https://doi.org/10.1016/j.gaitpost.2007.07.007

    Article  Google Scholar 

  26. Koo, T.K., Li, M.Y.: A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 15(2), 155–163 (2016). https://doi.org/10.1016/j.jcm.2016.02.012

    Article  Google Scholar 

  27. Pohl, M.B., Messenger, N., Buckley, J.G.: Forefoot, rearfoot and shank coupling: effect of variations in speed and mode of gait. Gait Posture 25(2), 295–302 (2007). https://doi.org/10.1016/j.gaitpost.2006.04.012

    Article  Google Scholar 

  28. Dolatabadi, E., Taati, B., Mihailidis, A.: Concurrent validity of the microsoft kinect for windows v2 for measuring spatiotemporal gait parameters. Med. Eng. Phys. 38(9), 952–958 (2016). https://doi.org/10.1016/j.medengphy.2016.06.015

    Article  Google Scholar 

  29. Barthuly, A.M., Bohannon, R.W., Gorack, W.: Gait speed is a responsive measure of physical performance for patients undergoing short-term rehabilitation. Gait Posture 36(1), 61–64 (2012). https://doi.org/10.1016/j.gaitpost.2012.01.002

    Article  Google Scholar 

  30. Zago, M., Luzzago, M., Marangoni, T., De Cecco, M., Tarabini, M., Galli, M.: 3D Tracking of human motion using visual skeletonization and stereoscopic vision. Front. Bioeng. Biotechnol. 8, 1–11 (2020). https://doi.org/10.3389/fbioe.2020.00181

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by "5 per mille" funds for biomedical research, in particular for the project “5x1000/2023 - Sviluppo di nuovi protocolli di valutazione funzionale multifattoriale e relativi indici per l’età pediatrica” awarded to Prof. Giuseppe Andreoni, and by the Italian Ministry of Health (Ricerca Corrente 2024 to Dr. Eng. E. Biffi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Andreoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andreoni, G., Molteni, L.E. (2024). Comparison of the Accuracy of Markerless Motion Analysis and Optoelectronic System for Measuring Lower Limb Gait Kinematics. In: Duffy, V.G. (eds) Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. HCII 2024. Lecture Notes in Computer Science, vol 14710. Springer, Cham. https://doi.org/10.1007/978-3-031-61063-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61063-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61062-2

  • Online ISBN: 978-3-031-61063-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics