Abstract
The vehicle-to-grid feature of today’s electric vehicles suggests using them as batteries for stabilizing the power grid besides using them to fulfill mobility needs. In the context of car-sharing, the car-sharing provider may thus try to foster two goals: they may be interested in stabilizing the grid and ensuring the usage of as much green energy as possible. At the same time, they try to maximize satisfaction of the customer’s requests. As such, each car-sharing provider has to implement a policy on how to react to booking requests. On the other hand, customers may react to how mobility needs are fulfilled and adapt their booking strategy. In this paper, we study the problem of how to model elements of car-sharing providers as well as those of customers in a multi-agent simulation. We identify the principal elements and targets while leaving concrete simulations as future work.
This project was funded by the state of Schleswig-Holstein, Germany.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Ajzen, I.: The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 50(2), 179–211 (1991)
Ali, A.T., Leucker, M., Schuldei, A., Stellbrink, L., Sachenbacher, M.: A comparative analysis of multi-agent simulation platforms for energy and mobility management. In: Malvone, V., Murano, A. (eds.) Multi-Agent Systems, EUMAS 2023. LNCS, vol. 14282, pp. 295–311. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43264-4_19
Amouroux, E., Chu, T.-Q., Boucher, A., Drogoul, A.: GAMA: an environment for implementing and running spatially explicit multi-agent simulations. In: Ghose, A., Governatori, G., Sadananda, R. (eds.) PRIMA 2007. LNCS (LNAI), vol. 5044, pp. 359–371. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01639-4_32
Anebagilu, P.K., Dietrich, J., Prado-Stuardo, L., Morales, B., Winter, E., Arumi, J.L.: Application of the theory of planned behavior with agent-based modeling for sustainable management of vegetative filter strips. J. Environ. Manage. 284, 112014 (2021)
Beltaief, O., El, Hadouaj, S., Ghedira, K.: Multi-agent simulation model of pedestrians crowd based on psychological theories. In: 2011 4th International Conference on Logistics, pp. 150–156. IEEE (2011)
Berger, G., Feindt, P.H., Holden, E., Rubik, F.: Sustainable mobility-challenges for a complex transition (2014)
Burger, B.: Energy charts. https://energy-charts.info/charts/price_spot_market/chart.htm?l=de&c=DE&year=2022&interval=year
Caillou, P., Gaudou, B., Grignard, A., Truong, C.Q., Taillandier, P.: A simple-to-use BDI architecture for agent-based modeling and simulation. In: Jager, W., Verbrugge, R., Flache, A., de Roo, G., Hoogduin, L., Hemelrijk, C. (eds.) Advances in Social Simulation 2015. AISC, vol. 528, pp. 15–28. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47253-9_2
Carver, C.S., Scheier, M.F.: Control theory: a useful conceptual framework for personality-social, clinical, and health psychology. Psychol. Bull. 92(1), 111 (1982)
Datseris, G., Vahdati, A.R., DuBois, T.C.: Agents.jl: a performant and feature-full agent based modelling software of minimal code complexity (2021)
Edmonds, B., Bryson, J.J.: The insufficiency of formal design methods-the necessity of an experimental approach for the understanding and control of complex MAS. In: 2004 Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2004, vol. 1, pp. 938–945. IEEE Computer Society (2004)
Fang, X., Misra, S., Xue, G., Yang, D.: Smart grid-the new and improved power grid: a survey. IEEE Commun. Surv. Tut. 14(4), 944–980 (2011)
Franke, T., Krems, J.F.: Understanding charging behaviour of electric vehicle users. Transport. Res. F: Traffic Psychol. Behav. 21, 75–89 (2013)
Guastello, S.: Progress in applied nonlinear dynamics: welcome to NDPLS volume 8. Nonlin. Dyn. Psychol. Life Sci. 8, 1–15 (2004)
Güney, T.: Renewable energy, non-renewable energy and sustainable development. Int. J. Sustain. Dev. World Ecol. 26(5), 389–397 (2019)
Van der Hoek, W., Wooldridge, M.: Multi-agent systems. Found. Artif. Intell. 3, 887–928 (2008)
International Organisation for Standardizsation: ISO 15118-1:2019 Road vehicles – Vehicle to grid communication interface – Part 1: General information and use-case definition. Standard, International Organization for Standardization, April 2019
Inturri, G., et al.: Multi-agent simulation for planning and designing new shared mobility services. Res. Transp. Econ. 73, 34–44 (2019)
Izquierdo, L.R., Izquierdo, S.S., Gotts, N.M., Polhill, J.G.: Transient and asymptotic dynamics of reinforcement learning in games. Games Econom. Behav. 61(2), 259–276 (2007)
Jiang, H., Vidal, J.M., Huhns, M.N.: EBDI: an architecture for emotional agents. In: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 1–3 (2007)
Mwasilu, F., Justo, J.J., Kim, E.K., Do, T.D., Jung, J.W.: Electric vehicles and smart grid interaction: a review on vehicle to grid and renewable energy sources integration. Renew. Sustain. Energy Rev. 34, 501–516 (2014)
Nansubuga, B., Kowalkowski, C.: Carsharing: a systematic literature review and research agenda. J. Serv. Manage. 32(6), 55–91 (2021). https://doi.org/10.1108/JOSM-10-2020-0344. https://www.emerald.com/insight/content/doi/10.1108/JOSM-10-2020-0344/full/html
Paska, J., Biczel, P., Kłos, M.: Hybrid power systems-an effective way of utilising primary energy sources. Renew. Energy 34(11), 2414–2421 (2009)
Qazi, A., et al.: Towards sustainable energy: a systematic review of renewable energy sources, technologies, and public opinions. IEEE Access 7, 63837–63851 (2019)
Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In: Readings in Agents, pp. 317–328 (1997)
Rizvi, S.A.A., Xin, A., Masood, A., Iqbal, S., Jan, M.U., Rehman, H.: Electric vehicles and their impacts on integration into power grid: a review. In: 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), pp. 1–6. IEEE (2018)
Scalco, A., Ceschi, A., Sartori, R.: Application of psychological theories in agent-based modeling: the case of the theory of planned behavior. Nonlinear Dyn. Psychol. Life Sci. 22, 15–33 (2018)
Schrills, T., Rosenbusch, L., Zoubir, M., Stahl, J., Franke, T.: Supporting interaction with CO\(_2\) as a resource with individual carbon footprint trackers as everyday assistants. In: Black, N.L., Neumann, W.P., Noy, I. (eds.) IEA 2021. LNNS, vol. 220, pp. 573–581. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-74605-6_73
Shaheen, S., Cohen, A., Farrar, E.: Carsharing’s impact and future. In: Advances in Transport Policy and Planning, vol. 4, pp. 87–120. Elsevier (2019). https://doi.org/10.1016/bs.atpp.2019.09.002. https://linkinghub.elsevier.com/retrieve/pii/S2543000919300356
Taatgen, N.A., Lebiere, C., Anderson, J.R.: Modeling paradigms in ACT-R. In: Cognition and Multi-agent Interaction: From Cognitive Modeling to Social Simulation, pp. 29–52 (2006)
Tisue, S., Wilensky, U.: NetLogo: a simple environment for modeling complexity. In: International Conference on Complex Systems, vol. 21, pp. 16–21. Citeseer (2004)
Tol, R.S.J.: The economic effects of climate change. J. Econ. Perspect. 23(2), 29–51 (2009)
Van Kriekinge, G., De Cauwer, C., Sapountzoglou, N., Coosemans, T., Messagie, M.: Peak shaving and cost minimization using model predictive control for uni-and bi-directional charging of electric vehicles. Energy Rep. 7, 8760–8771 (2021)
W Axhausen, K., Horni, A., Nagel, K.: The Multi-Agent Transport Simulation MATsim. Ubiquity Press (2016)
Wang, W., Yuan, B., Sun, Q., Wennersten, R.: Application of energy storage in integrated energy systems - a solution to fluctuation and uncertainty of renewable energy. J. Energy Storage 52, 104812 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ali, A.T. et al. (2024). Multi-agent Simulation of Intelligent Energy Regulation in Vehicle-to-Grid. In: Nardin, L.G., Mehryar, S. (eds) Multi-Agent-Based Simulation XXIV. MABS 2023. Lecture Notes in Computer Science(), vol 14558. Springer, Cham. https://doi.org/10.1007/978-3-031-61034-9_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-61034-9_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-61033-2
Online ISBN: 978-3-031-61034-9
eBook Packages: Computer ScienceComputer Science (R0)