Skip to main content

Evanescent Wave Filtering for Ultrasound RF-Data Compression

  • Conference paper
  • First Online:
Wireless Mobile Communication and Healthcare (MobiHealth 2023)

Abstract

Multistatic imaging techniques, such as Synthetic Aperture Ultrasound (SAU) or Plane Wave Imaging (PWI), offer several advantages in terms of image quality for diagnostic ultrasound imaging. However, the vast amount of data generated by these methods can be challenging to process and store. To address this issue, various compression techniques have been developed. In this work, we propose a compression method based on a physical approach utilizing evanescent wave components in the radio frequency (RF) data.

The basic idea behind our approach is to eliminate the higher frequencies in the data that are no longer necessary, due to the limited spatial sampling frequency. By doing so, we can reduce the amount of data without sacrificing noticeable amounts of image quality, as shown by simulation results. An additional advantage of our approach is that no decompression steps have to be conducted if the image reconstruction algorithm operates in the spatial frequency-domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boni, E., Yu, A.C.H., Freear, S., Jensen, J.A., Tortoli, P.: Ultrasound open platforms for next-generation imaging technique development. IEEE Transa. Ultrason. Ferroelectr. Freq. Control 65(7), 1078–1092 (2018). https://doi.org/10.1109/TUFFC.2018.2844560, https://ieeexplore.ieee.org/document/8374071/

  2. Chew, W.C.: Planarly Layered Media. In: Waves and Fields in Inhomogenous Media. IEEE (2009). https://doi.org/10.1109/9780470547052.ch2, http://ieeexplore.ieee.org/search/srchabstract.jsp?arnumber=5271009

  3. Freitas, M.D.A., Jimenez, M.R., Benincaza, H., Von Der Weid, J.P.: A new lossy compression algorithm for ultrasound signals. In: 2008 IEEE Ultrasonics Symposium, pp. 1885–1888. IEEE, Beijing, China, November 2008. https://doi.org/10.1109/ULTSYM.2008.0464, http://ieeexplore.ieee.org/document/4803348/

  4. Garcia, D., Tarnec, L.L., Muth, S., Montagnon, E., Porée, J., Cloutier, G.: Stolt’s f-k migration for plane wave ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(9), 1853–1867 (2013). https://doi.org/10.1109/TUFFC.2013.2771

    Article  Google Scholar 

  5. Jensen, J., Svendsen, N.: Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IIEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(2), 262–267 (1992). https://doi.org/10.1109/58.139123, conference Name: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

  6. Jensen, J.A.: Field: a program for simulating ultrasound systems: 10th Nordic-Baltic conference on biomedical imaging. Med. Biol. Eng. Comput. 34(sup. 1), 351–353 (1997)

    Google Scholar 

  7. Jensen, J.A., Nikolov, S.I., Gammelmark, K.L., Pedersen, M.H.: Synthetic aperture ultrasound imaging. Ultrasonics 44, e5–e15 (2006). https://doi.org/10.1016/j.ultras.2006.07.017, https://linkinghub.elsevier.com/retrieve/pii/S0041624X06003374

  8. Kleparnik, P., Zemcik, P., Jaros, J.: Efficient lossy compression of ultrasound data. In: 2017 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp. 232–237. IEEE, Bilbao, December 2017. https://doi.org/10.1109/ISSPIT.2017.8388647, https://ieeexplore.ieee.org/document/8388647/

  9. Liu, R.: Data compression in ultrasound computed tomography. PhD Thesis, Karlsruhe Institute of Technology (2011). http://digbib.ubka.uni-karlsruhe.de/volltexte/1000023057

  10. Moghimirad, E., Villagomez Hoyos, C.A., Mahloojifar, A., Mohammadzadeh Asl, B., Jensen, J.A.: Synthetic aperture ultrasound fourier beamformation using virtual sources. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(12), 2018–2030 (2016). https://doi.org/10.1109/TUFFC.2016.2606878, https://ieeexplore.ieee.org/document/7562394/

  11. Montaldo, G., Tanter, M., Bercoff, J., Benech, N., Fink, M.: Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(3), 489–506 (2009). https://doi.org/10.1109/TUFFC.2009.1067, http://ieeexplore.ieee.org/document/4816058/

  12. Pesavento, A., Burow, V., Ermert, H.: Compression of ultrasonic RF data, vol. 2, pp. 1471–1474. IEEE, Toronto, Ont., Canada (1997). https://doi.org/10.1109/ULTSYM.1997.661854, http://ieeexplore.ieee.org/document/661854/

  13. Cheng, P.-W., Shen, C-C., Li, P.C.: Ultrasound RF channel data compression for implementation of a software-based array imaging system. In: 2011 IEEE International Ultrasonics Symposium, pp. 1423–1426. IEEE, Orlando, FL, USA, October 2011. https://doi.org/10.1109/ULTSYM.2011.0352, http://ieeexplore.ieee.org/document/6293721/

  14. Rodriguez-Molares, A., et al.: The ultrasound toolbox. In: 2017 IEEE International Ultrasonics Symposium (IUS), pp. 1–4. IEEE, Washington, DC, September 2017. https://doi.org/10.1109/ULTSYM.2017.8092389, https://ieeexplore.ieee.org/document/8092389/

  15. Sommerfeld, A.: Eigenfunctions and Eigen Values. In: Pure and Applied Mathematics, vol. 1, pp. 166–235. Elsevier (1949). https://doi.org/10.1016/S0079-8169(08)60771-0, https://linkinghub.elsevier.com/retrieve/pii/S0079816908607710

  16. Sorensen, H., Jones, D., Heideman, M., Burrus, C.: Real-valued fast Fourier transform algorithms. IEEE Trans. Acoustics Speech Signal Process. 35(6), 849–863 (1987). https://doi.org/10.1109/TASSP.1987.1165220, http://ieeexplore.ieee.org/document/1165220/

  17. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861, conference Name: IEEE Transactions on Image Processing

Download references

Acknowledgement

This work was supported by the German Federal Ministry of Education and Research (BMBF) as part of the project “MEDGE” under grant 16ME0531.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar M. G. Dorausch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dorausch, E.M.G. et al. (2024). Evanescent Wave Filtering for Ultrasound RF-Data Compression. In: Cunha, A., Paiva, A., Pereira, S. (eds) Wireless Mobile Communication and Healthcare. MobiHealth 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 578. Springer, Cham. https://doi.org/10.1007/978-3-031-60665-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-60665-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-60664-9

  • Online ISBN: 978-3-031-60665-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics