Skip to main content

Evaluation of SCS-CN Method for Incorporation of Antecedent Precipitation

  • Conference paper
  • First Online:
Towards Water Circular Economy (RWC 2024)

Abstract

Soil Conservation Service Curve Number (SCS-CN) method currently known as Natural Resources Conservation Services curve number (NRCS-CN) method, is one of the extensively used reliable, simple, and attractive model in practical hydrology for direct surface runoff (rainfall-excess) prediction of a given storm, initially developed for direct surface runoff estimation in small and medium agricultural watersheds of the USA, later extended to other geographical regions of different land use land cover, and climatic conditions of different parts of the earth viz, to rural, urban, forest, experimental. Besides of various improvements, the method has also been extended to a number of hydrological application beyond its initial purpose. This study evaluates incorporation of antecedent precipitation (P5) in place of the antecedent moisture (Mishra and Singh 2004 models) in the Soil Conservation Services-Curve Number (SCS-CN) method using a large set of rainfall-runoff data from 234 small to large experimental watersheds from USDA-ARS. Three variants of the proposed models (M3, M6, and M9), Mishra and Singh models (M2, M5, and M8), and existing SCS-CN (M1, M4, and M7), out of which the first two models of proposed, Mishra and Singh, and existing models are one parameter or CN based and the third model of each are two parameters (CN and λ) models are considered. Employing the widely used performance evaluation goodness of fit (GoF) criterion of root mean square error (RMSE) and ranking based grading system indicate that all the variants of proposed models in turn performing far better than variants of Mishra and Singh model followed by variants existing model, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Ghobari, H., Dewidar, A., Alataway, A.: Estimation of surface water runoff for a semi-arid area using RS and GIS-based SCS-CN method. Water 12(7), 1924 (2020)

    Article  Google Scholar 

  • Arnold, J.G., Williams, J.R., Srinivasan, R., King, K.W., Griggs, R.H.: SWAT (soil and water assessment Tool) user’s manual. Temple, Texas: USDA. In: Agricultural Research Service, Grassland, Soil, and Water Research Laboratory (1994). http://www.brc.tamus.edu/swat/. Accessed 13 Dec 2005

  • Baiamonte, G.: SCS curve number and green-Ampt infiltration models. J. Hydrol. Eng. 24(10), 04019034 (2019)

    Article  Google Scholar 

  • Baltas, E.A., Dervos, N.A., Mimikou, M.A.: Determination of the SCS initial abstraction ratio in an experimental watershed in Greece. Hydrol. Earth Syst. Sci. 11(6), 1825–1829 (2007)

    Article  Google Scholar 

  • Bartlett, M.S., Parolari, A.J., McDonnell, J.J., Porporato, A.: Beyond the SCS-CN method: a theoretical framework for spatially lumped rainfall-runoff response. Water Resour. Res. 52(6), 4608–4627 (2016)

    Article  Google Scholar 

  • Bhunya, P.K., Mishra, S.K., Berndtsson, R.: Estimation of confidence interval for curve numbers. ASCE J. Hydrol. Eng. 8(4), 232–233 (2003)

    Article  Google Scholar 

  • Bondelid, T.R., McCuen, R.H., Jackson, T.J.: Sensitivity of SCS models to curve number variation. Water Resour. Bull. Am. Water Resour. Assoc. 18(1), 111–116 (1982)

    Article  Google Scholar 

  • Bonta, J.V.: Determination of watershed curve number using derived distributions. ASCE J. Irrig. Drainage Eng. 123(1), 28–36 (1997)

    Article  Google Scholar 

  • Caletka, M., Šulc Michalková, M., Karásek, P., Fučík, P.: Improvement of SCS-CN initial abstraction coefficient in the Czech Republic: a study of five catchments. Water 12, 1964 (2020)

    Article  Google Scholar 

  • Candela, A., Aronica, G., Santoro, M.: Effects of forest fires on flood frequency curves in a Mediterranean catchment. Hydrol. Sci. J. 50, 193–206 (2005)

    Article  Google Scholar 

  • Fu, S., Zhang, G., Wang, N., Luo, L.: Initial abstraction ratio in the SCS-CN method in the loess Plateau of China. Trans. ASABE 54(1), 163–169 (2011)

    Article  Google Scholar 

  • Garen, D.C., Moore, D.S.: Curve number hydrology in water quality modeling: uses, abuses, and future directions 1. JAWRA J. Am. Water Resour. Assoc. 41(2), 377–388 (2005)

    Article  Google Scholar 

  • Geetha, K., Mishra, S.K., Eldho, T.I., Rastogi, A.K., Pandey, R.P.: Modifications to SCS-CN method for long-term hydrologic simulation. J. Irrig. Drain. Eng. 133(5), 475–486 (2007)

    Article  Google Scholar 

  • Grayson, R.B., Moore, I.D., Mcmahon, T.A.: Physically based hydrologic modeling: 1. A terrain-based model for investigative purposes. Water Resour. Res. 28(10), 2639–2658 (1992)

    Article  Google Scholar 

  • Gupta, S.K., Tyagi, J., Sharma, G., Jethoo, A.S., Singh, P.K.: An event-based sediment yield and runoff modeling using soil moisture balance/budgeting (SMB) method. Water Resour. Manage 33(11), 3721–3741 (2019)

    Article  Google Scholar 

  • Hameed, H.M.: Estimating the effect of urban growth on annual runoff volume using GIS in the Erbil subbasin of the Kurdistan region of Iraq. Hydrology 4, 12 (2017)

    Article  Google Scholar 

  • Hawkins, R.H.: Curve number method: time to think anew? (2014)

    Google Scholar 

  • Hawkins, R.H.: Runoff curve numbers with varying site moisture. ASCE J. Irrig. Drainage Div. 104(IR4), 389–398 (1978)

    Article  Google Scholar 

  • Hawkins, R.H., Hjelmfelt, A.T., Jr., Zevenbergen, A.W.: Runoff probability, storm depth, and curve numbers. ASCE J. Irrig. Drainage Eng. 111(4), 330–339 (1985)

    Article  Google Scholar 

  • Hawkins, R.H.: Asymptotic determination of runoff curve numbers from data. ASCE J. Irrig. Drainage Eng. 119(2), 334–345 (1993)

    Article  Google Scholar 

  • Hawkins, R.H., Moglen, G.E., Ward, T.J., Woodward, D.E.: Updating the curve number: task group report. In: Proceedings of the Watershed Management 2020: A Clear Vision of Watershed Management—Selected Papers from the Watershed Management Conference 2020, pp. 131–140. American Society of Civil Engineers (ASCE), Reston (2020)

    Google Scholar 

  • Hjelmfelt, A.T., Jr.: Investigation of curve number procedure. J. Hydraul. Eng. 117(6), 725–737 (1991)

    Article  Google Scholar 

  • Hjelmfelt, A.T.: Empirical investigation of curve number technique. J. Hydraul. Div. 106(9), 1471–1476 (1980)

    Article  Google Scholar 

  • Hu, P., Tang, J., Fan, J., Shu, S., Hu, Z., Zhu, B.: Incorporating a rainfall intensity modification factor γ into the Ia-S Relationship in the NRCS-CN method. Int. Soil Water Conserv. Res. 8(3), 237–244 (2020)

    Article  Google Scholar 

  • Hydrologic Engineering Center (US), and Water Resources Support Center (US). HEC-1 flood hydrograph package: User’s manual. US Army Corps of Engineers, Water Resources Support Center, Hydrologic Engineering Center (1981)

    Google Scholar 

  • King, K.W., Balogh, J.C.: Curve numbers for golf course watersheds. Trans. ASAE 51, 987–996 (2008)

    Article  Google Scholar 

  • Knisel, W.G.: CREAMS: A field scale model for chemicals, runoff, and erosion from agricultural management systems (No. 26). Department of Agriculture, Science and Education Administration (1980)

    Google Scholar 

  • Lal, M., et al.: Evaluation of the soil conservation service curve number methodology using data from agricultural plots. Hydrogeol. J. 25, 151–167 (2016). https://doi.org/10.1007/s10040-016-1460-5

    Article  Google Scholar 

  • Legates, D.R., McCabe, G.J., Jr.: Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 35(1), 233–241 (1999)

    Article  Google Scholar 

  • Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2(2), 164–168 (1944)

    Article  Google Scholar 

  • Lim, K.J., Engel, B.A., Muthukrishnan, S., Harbor, J.: Effects of initial abstraction and urbanization on estimated runoff using CN Technology 1. JAWRA J. Am. Water Resour. Assoc. 42(3), 629–643 (2006)

    Article  Google Scholar 

  • Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)

    Article  Google Scholar 

  • McCuen, R.H., Knight, Z., Gillian, C.A.: Evaluation of the Nash-Sutcliffe efficiency index. J. Hydrol. Eng. 11(6), 597–602 (2006)

    Article  Google Scholar 

  • McCuen, R.H.: Approach to confidence interval estimation for curve numbers. J. Hydrol. Eng. 7(1), 43–48 (2002)

    Article  Google Scholar 

  • Metcalf and Eddy, Inc., University of Florida, and Water Resources Engineers, Inc.: Storm Water Management Model, vol. I. Final Report, 11024DOC07/71 (NTIS PB-203289), U.S. EPA, Washington, DC, 20460 (1971)

    Google Scholar 

  • Mishra, S.K., Singh, V.P.: Another look at SCS-CN method. J. Hydrol. Eng. 4(3), 257–264 (1999)

    Article  Google Scholar 

  • Mishra, S.K., Singh, V.P.: SCS-CN method. Part I: derivation of SCS-CN-based models (2002)

    Google Scholar 

  • Mishra, S.K., Singh, V.P.: SCS-CN method. In: Mishra, S.K., Singh, V.P. (eds.) Soil Conservation Service Curve Number (SCS-CN) Methodology. Water Science and Technology Library, vol. 42, pp. 84–146. Springer, Dordrecht (2003). https://doi.org/10.1007/978-94-017-0147-1_2

    Chapter  Google Scholar 

  • Mishra, S.K., Singh, V.P.: Validity and extension of the SCS-CN method for computing infiltration and rainfall-excess rates. Hydrol. Process. 18(17), 3323–3345 (2004)

    Article  Google Scholar 

  • Mishra, S.K., Singh, V.P.: Soil Conservation Service Curve Number (SCS-CN) Methodology, vol. 42. Springer, Heidelberg (2013)

    Google Scholar 

  • Mishra, S.K., Singh, R.D., Nema, R.K.: A modified SCS-CN method for watershed modeling. In: Proceedings of International Conference on Watershed Management and Conservation, Central Board of Irrigation and Power, 8–10 December 1998, New Delhi, India (1998)

    Google Scholar 

  • Nalbantis, I., Lymperopoulos, S.: Assessment of flood frequency after forest fires in small ungauged basins based on uncertain measurements. Hydrol. Sci. J. 57, 52–72 (2012)

    Article  Google Scholar 

  • Ponce, V.M., Hawkins, R.H.: Runoff curve number: has it reached maturity? J. Hydrol. Eng. 1(1), 11–19 (1996)

    Article  Google Scholar 

  • Romero, P., Castro, G., Gomez, J.A., Fereres, E.: Curve number values for olive orchards under different soil management. Soil Sci. Soc. Am. J. 71(6), 1758–1769 (2007)

    Article  Google Scholar 

  • Sahu, R.K., Mishra, S.K., Eldho, T.I.: Comparative evaluation of SCS-CN-inspired models in applications to classified datasets. Agric. Water Manag. 97(5), 749–756 (2010)

    Article  Google Scholar 

  • Sharpley, A.N., Williams, J.R.: EPIC-Erosion/Productivity Impact Calculator. I: Model Documentation. II: User Manual. Technical Bulletin-United States Department of Agriculture (1768) (1990)

    Google Scholar 

  • Shi, W., Wang, N.: An improved SCS-CN method incorporating slope, soil moisture, and storm duration factors for runoff prediction. Water 12(5), 1335 (2020)

    Article  Google Scholar 

  • Shi, Z.H., Chen, L.D., Fang, N.F., Qin, D.F., Cai, C.F.: Research on the SCS-CN initial abstraction ratio using rainfall-runoff event analysis in the Three Gorges Area, China. CATENA 77(1), 1–7 (2009)

    Article  Google Scholar 

  • Singh, P.K., Gaur, M.L., Mishra, S.K., Rawat, S.S.: An updated hydrological review on recent advancements in soil conservation service-curve number technique. J. Water Clim. Change 01(2), 118–134 (2010)

    Article  Google Scholar 

  • Sobhani, G.: A review of selected small watershed design methods for possible adoption to Iranian conditions. M.S. thesis, Utah State University, Logan, Utah (1975)

    Google Scholar 

  • Soil Conservation Service (SCS). Hydrology, National Engineering Handbook, Supplement A, Section 4, Chapter 10, Soil Conservation Service, U.S.D.A., Washington, D.C. (1956, 1964, 1971, 1972, 1985, 2004)

    Google Scholar 

  • Soni, B., Mishra, G.C.: Soil water accounting using SCS hydrologic soil classification. Case study. National Institute of Hydrology, Roorkee, India (1985)

    Google Scholar 

  • Soulis, K.X.: Estimation of SCS curve number variation following forest fires. Hydrol. Sci. J. 63, 1332–1346 (2018)

    Article  Google Scholar 

  • Soulis, K.X.: Soil conservation service curve number (SCS-CN) method: current applications, remaining challenges, and future perspectives. Water 13, 192 (2021). https://doi.org/10.3390/w13020192

    Article  Google Scholar 

  • Soulis, K.X., Valiantzas, J.D.: SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds. The two-CN system approach. Hydrol. Earth Syst. Sci. 16, 1001–1015 (2012)

    Article  Google Scholar 

  • Verma, R.K, Verma, S., Mishra, S.K., Pandey. A.: SCS-CN-based improved models for direct surface runoff estimation from large rainfall events. Water Resour. Manage. (2021). https://doi.org/10.1007/s11269-021-02831-5

  • Verma, S., Singh, P.K., Mishra, S.K., Singh, V.P., Singh, V., Singh, A.: Activation soil moisture accounting (ASMA) for runoff estimation using soil conservation service curve number (SCS-CN) method. J. Hydrol. 589, 125114 (2020)

    Article  Google Scholar 

  • Walega, A., Michalec, B., Cupak, A., Grzebinoga, M.: Comparison of SCS-CN determination methodologies in a heterogeneous catchment. J. Mt. Sci. 12(5), 1084–1094 (2015). https://doi.org/10.1007/s11629-015-3592-9

    Article  Google Scholar 

  • Walega, A., Cupak, A., Amatya, D.M., Drozdzal, E.: Comparison of direct outflow calculated by modified SCS-CN methods for mountainous and highland catchments in upper Vistula Basin, Poland and lowland catchment in South Carolina, USA. Acta Scientiarum Polonorum Formatio Circumiectus 16(1), 187–207 (2017)

    Article  Google Scholar 

  • Wang, D.: A new probability density function for spatial distribution of soil water storage capacity leads to the SCS curve number method. Hydrol. Earth Syst. Sci. 22(12), 6567–6578 (2018)

    Article  Google Scholar 

  • Williams, J.R., LaSeur, W.V.: Water yield model using SCS curve numbers. J. Hydr. Div. ASCE 102, 1241–1253 (1976)

    Article  Google Scholar 

  • Williams, J.R., Kannan, N., Wang, X., Santhi, C., Arnold, J.G.: Evolution of the SCS runoff curve number method and its application to continuous runoff simulation. J. Hydrol. Eng. 17(11), 1221–1229 (2012)

    Article  Google Scholar 

  • Yilmaz, K.K., Adler, R.F., Tian, Y., Hong, Y., Pierce, H.F.: Evaluation of a satellite-based global flood monitoring system. Int. J. Remote Sens. 31, 3763–3782 (2010)

    Article  Google Scholar 

  • Young, R.A., Onstad, C.A., Bosch, D.D., Anderson, W.P.: Agnps: A nonpoint source pollution model for evaluating agricultural watersheds. J. Soil Water Conserv. 44, 168–173 (1989)

    Google Scholar 

  • Zhang, D., Lin, Q., Chen, X., Chai, T.: Improved curve number estimation in SWAT by reflecting the effect of rainfall intensity on runoff generation. Water 11(1), 163 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Department of Water Resource Development and Management, Indian Institute of Technology Roorkee, Roorkee-247667, India, for providing all necessary facilities to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmatullah Sangin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sangin, E., Patil, P.R., Mishra, S.K., Sen, S. (2024). Evaluation of SCS-CN Method for Incorporation of Antecedent Precipitation. In: Agarwal, A., Yadav, B., Nema, M., Sharma, M., Kumar, A. (eds) Towards Water Circular Economy. RWC 2024. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-60436-2_10

Download citation

Publish with us

Policies and ethics