Skip to main content

Enhancing Altitude Data Accuracy in Small Aircraft Systems Using Standard Kalman Filters

  • Conference paper
  • First Online:
Proceedings of the 2nd International Workshop on Advances in Civil Aviation Systems Development (ACASD 2024)

Abstract

Accurate altitude estimation is a critical aspect of small aircraft system operational efficiency and design. This research studies pressure sensors and methods that could improve the accuracy of altitude data for small aircraft applications. Digital pressure sensors BMP180 and BMP280 have been used for data fusion. Altitude data derived from disparate sources have less uncertainty than if they were used individually. Despite the benefits of sensor fusion of the BMP180 and BMP280 sensors themselves, their sensitivity to noise presents a significant challenge requiring noise reduction strategies, such as filtering techniques. Standard Kalman filter (SKF) has been used for enhancing altitude data accuracy due to its robust real-time processing and ability to control linear systems noise. SKF reduces noise, increasing height measurement accuracy. The proposed methodology was substantiated through the integration of sensor fusion, on an Arduino Uno platform. Also, we consider application of these pressure sensors with SKF data processing in the altitude control systems of airplanes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Halit, Е, Roocke, P.: Altimeters. Encycl. Electr. Eng. 24, 7–20 (2000)

    Google Scholar 

  2. Matyja, T., Kubik, A., Stanik, Z.: The MEMS-based barometric altimeter inaccuracy and drift phenomenon. Sci. J. Silesian Univ. Technol. Ser. Transp. 116, 141–162 (2022). https://doi.org/10.20858/sjsutst.2022.116.9

  3. Solomentsev, O., Zaliskyi, M.: Correlated failures analysis in navigation system. In: 5th International Conference on Methods and Systems of Navigation and Motion Control, pp. 41–44. IEEE, Kyiv (2018). https://doi.org/10.1109/MSNMC.2018.8576306

  4. Shaukat, S., Katscher, M., Wu, C.L., Delgado, F., Larrain, H.: Aircraft line maintenance scheduling and optimisation. J. Air Transp. Manag. 89(101914), 1–11 (2020). https://doi.org/10.1016/j.jairtraman.2020.101914

    Article  Google Scholar 

  5. Zaliskyi, M., Shcherbyna, O., Zuiev, O., Solomentsev, O., Kozhokhina, O., Petrova, Y.: Statistical data processing for radio equipment in case of technical condition deterioration. In: 11th International Conference on Advanced Computer Information Technologies (ACIT), pp. 91–94. IEEE, Deggendorf (2021). https://doi.org/10.1109/ACIT52158.2021.9548454

  6. Ostroumov, I., Kuzmenko, N., Marais, K.: Optimal pair of navigational aids selection. In: 5th International Conference on Methods and Systems of Navigation and Motion Control, pp. 32–35. IEEE, Kyiv (2018). https://doi.org/10.1109/MSNMC.2018.8576293

  7. Ostroumov, I., Kuzmenko, N.: Risk assessment of mid-air collision based on positioning performance by navigational aids. In: 6th International Conference on Methods and Systems of Navigation and Motion Control, pp. 34–37. IEEE, Kyiv (2020). https://doi.org/10.1109/MSNMC50359.2020.9255506

  8. Kalman, R.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 34–45 (1960)

    Article  MathSciNet  Google Scholar 

  9. Welch, G., Bishop, G.: An introduction to the Kalman filter, pp. 1–16. University of North Carolina at Chapel Hill (2006)

    Google Scholar 

  10. Mansoor, M., et al.: An SOI CMOS-based multi-sensor MEMS chip for fiuidic applications. Sensors 16(11), 1608 (2016). https://doi.org/10.3390/s16111608

    Article  Google Scholar 

  11. Werner, M., Fahrner, W.: Review on materials, microsensors, systems and devices for high-temperature and harsh-environment applications. IEEE Trans. Industr. Electron. 48(2), 249–257 (2001)

    Article  Google Scholar 

  12. Zang, Y., Zhang, F., Di, C.-A., Zhu, D.: Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater. Horiz. 2(2), 140–156 (2015). https://doi.org/10.1039/C4MH00147H

    Article  Google Scholar 

  13. Eswaran, P., Malarvizhi, S.: MEMS capacitive pressure sensors: a review on recent development and prospective. Int. J. Eng. Technol. 5, 2734 (2013)

    Google Scholar 

  14. Guo, Y., Li, Y., Guo, Z., Kim, K., Chang, F., Wang, S.: Bio-inspired stretchable absolute pressure sensor network. Sensors 16(1), 55 (2016). https://doi.org/10.3390/s16010055

    Article  Google Scholar 

  15. Bar-Shalom, Y., Li, X., Kirubarajan, T.: Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software, p. 547 (2001)

    Google Scholar 

  16. Deng, Z., Hu, Y., Yu, J., Na, Z.: Extended Kalman filter for real time indoor localization by fusing WiFi and smartphone inertial sensors. Micromachines 6, 523–543 (2015). https://doi.org/10.3390/mi6040523

    Article  Google Scholar 

  17. Shin, E.: A Quaternion-based unscented Kalman filter for the integration of GPS and MEMS INS. In: 17th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2004), Long Beach, CA, USA, pp. 1060–1068 (2004)

    Google Scholar 

  18. Diao, Z., Quan, H., Lan, L., Han, Y.: Analysis and compensation of MEMS gyroscope drift. In: 2013 Seventh International Conference on Sensing Technology (ICST), pp. 592–596. IEEE, Wellington (2013). https://doi.org/10.1109/ICSensT.2013.6727722

  19. Guo, Y., Han, F., Du, S., Ma, G., Zhu, L.: Performance analysis of MEMS gyro and improvement using Kalman filter. In: 34th Chinese Control Conference, pp. 4789–4794. IEEE, Hangzhou (2015). https://doi.org/10.1109/ChiCC.2015.7260380

  20. Solomentsev, O., Zaliskyi, M., Herasymenko, T., Kozhokhina, O., Petrova, Y.: Data processing in case of radio equipment reliability parameters monitoring. In: Advances in Wireless and Optical Communications (RTUWO), pp. 219–222. IEEE, Riga (2018). https://doi.org/10.1109/RTUWO.2018.8587882

  21. Backer, А.: Kalman Filter from the Ground Up, p. 436 (2023)

    Google Scholar 

  22. Zaliskyi, M., Solomentsev, O., Kozhokhina, O., Herasymenko, T.: Statistical data processing for condition-based maintenance. In: Signal Processing Symposium (SPSympo), pp. 232–235. IEEE, Krakow (2019). https://doi.org/10.1109/SPS.2019.8882103

  23. Bansal, D., Bajpai, A., Kumar, P., Kaur, M., Rangra, K.: Low actuating voltage spring - free RF MEMS SPDT switch. J. Electr. Comput. Eng. 7984548 (2016). https://doi.org/10.1155/2016/7984548

  24. Ahmed, A., Al-Gayem, Q.: Micro accelerometer built-in self-test and calibration using genetic algorithm and interpolation method. In: 2022 IEEE International Conference on Semiconductor Electronics (ICSE), pp. 49–52. IEEE, Kuala Lumpur (2022). https://doi.org/10.1109/ICSE56004.2022.9863170

  25. Zhang, H., Wei, X., Ding, Y., Jiang, Z., Ren, J.: A low noise capacitive MEMS accelerometer with anti-spring structure. Sens. Actuat. A 296, 79–86 (2019). https://doi.org/10.1016/j.sna.2019.06.051

    Article  Google Scholar 

  26. Han, C., Li, C., Zhao, Y., Li, B.: High-stability quartz resonant accelerometer with micro-leverages. J. Microelectromech. Syst. 30(2), 184–192 (2021). https://doi.org/10.1109/JMEMS.2020.3036121

    Article  Google Scholar 

  27. Zhao, Y., Xia, G., Shi, Q., Qiu, A.: Expanding bias-instability of MEMS silicon oscillating accelerometer utilizing AC polarization and self-compensation. Sensors 20(5), 1455 (2020). https://doi.org/10.3390/s20051455

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liudmyla Blahaia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kozhokhina, O., Yakovlev, Y., Blahaia, L., Shcherbyna, O., Yehorov, S. (2024). Enhancing Altitude Data Accuracy in Small Aircraft Systems Using Standard Kalman Filters. In: Ostroumov, I., Zaliskyi, M. (eds) Proceedings of the 2nd International Workshop on Advances in Civil Aviation Systems Development. ACASD 2024. Lecture Notes in Networks and Systems, vol 992. Springer, Cham. https://doi.org/10.1007/978-3-031-60196-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-60196-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-60195-8

  • Online ISBN: 978-3-031-60196-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics