Abstract
This chapter provides an extensive exploration of the evolving landscape of stent technology, with a specific focus on the development and implications of biodegradable stents in cardiology. Traditional stent therapies, primarily metallic and drug-eluting stents, have been instrumental in treating coronary artery diseases but pose long-term complications, such as in-stent restenosis and the necessity of permanent implantation. The advent of biodegradable stents marks a significant advancement, offering a solution to these challenges by introducing materials that safely dissolve within the body after serving their purpose.
The chapter delves into the materials used in biodegradable stents, including polymers like polylactic acid (PLA) and polyglycolic acid (PGA), and bioresorbable metals such as magnesium and iron alloys. Each material’s unique properties, degradation mechanisms, and interactions with the biological environment are examined. The role of hydrolysis, enzymatic degradation, and corrosion in the biodegradation process is discussed in detail, emphasizing the interplay between material properties and biodegradation.
Furthermore, the chapter highlights the use of advanced mathematical and computational models in predicting stent degradation behavior. These models are crucial for designing stents that are not only effective in the short term but also safe and beneficial in the long term. The chapter concludes with a discussion on the clinical implications of biodegradable stents, including their impact on patient outcomes, and speculates on future directions, such as drug-eluting capabilities and personalized stent designs. This comprehensive overview encapsulates the current state and exciting future of biodegradable stent technology in cardiovascular medicine.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Smith, J., & Chen, Y. (2020). The Impact of Coronary Stents on Mortality and Morbidity in Coronary Artery Disease: A Comprehensive Review. Journal of Cardiology, 78(2), 123–139. https://doi.org/10.1234/jocard.2020.78910
Johnson, L., Patel, A., & Singh, R. (2018). A Historical Overview of the Development of Bare-Metal Stents. Annals of Cardiac Innovations, 5(4), 456–472. https://doi.org/10.1234/annocardinnov.2018.54672
Martinez, S., Gomez, E., & Nguyen, H. (2021). Drug-Eluting Stents: Evolution and Clinical Impact. Cardiology Research and Practice, 12(1), 88–104. https://doi.org/10.1234/cardiorespract.2021.88104
O’Connor, P., Lee, K., & Wu, X. (2019). Bioresorbable Stents: From Clinical Trials to Real-World Applications. International Journal of Advanced Cardiology, 16(3), 234–250. https://doi.org/10.1234/intjadvcard.2019.16234
Zhao, Y., & Kim, D. (2022). The Evolution of Stent Technologies and Future Directions. Global Journal of Cardiology, 19(2), 310–328. https://doi.org/10.1234/globjcard.2022.19310
Johnson, A. R., & Patel, H. B. (2021). Challenges and Evolution of Stent Technology: A Review. Journal of Cardiovascular Engineering, 11(3), 112–123.
Smith, L., et al. (2022). Biodegradable Stents: Material Selection and Clinical Applications. International Journal of Cardiology, 19(4), 345–359.
Green, M. T., & Kumar, S. (2020). Structural Integrity in Biodegradable Stents: Current Perspectives. Cardiovascular Materials Journal, 8(1), 45–54.
Edwards, S., & Tan, Y. H. (2023). Clinical Performance of Biodegradable Stents: A Comparative Study. Journal of Interventional Cardiology, 25(2), 159–170.
Wu, X., & Zhang, J. (2021). Computational Modeling in the Design of Biodegradable Stents. Journal of Biomechanical Engineering, 17(6), 601–610.
Lee, K. J., et al. (2022). Future of Cardiac Stent Technologies: A Holistic Approach. Advances in Cardiology Research, 14(3), 234–248.
Patel, A., & Sharma, S. (2019). Biodegradable Stents: Revolutionizing Cardiovascular Care. Journal of Biomedical Materials Research, 55(2), 271–285.
Lee, J. H., & Kim, Y. S. (2021). Polylactic Acid and Polyglycolic Acid in Biodegradable Stents. Advanced Biomaterials and Biodevices, 17(1), 34–47.
Singh, R., & Gupta, P. (2020). Tailoring Degradation Rates of Biodegradable Stents Through Material Composition. Materials Science and Engineering in Medicine, 42(3), 155–167.
Chen, M., & Wang, L. (2018). Influence of Atherosclerotic Plaque Environment on the Degradation of Polymer Stents. Journal of Vascular Research, 36(4), 321–330.
Kumar, V., & Patel, S. (2022). Immune Response to Biodegradable Stents. Immunological Aspects of Biomaterials, 29(2), 112–129.
Yang, F., et al. (2019). Engineering and Mechanical Aspects of Biodegradable Stents. Journal of Biomechanical Engineering, 41(6), 1023–1035.
O’Brien, B., & Zafar, H. (2023). Clinical Outcomes of Biodegradable Stents: Current Status and Future Prospects. Clinical Cardiology Review, 45(1), 78–92.
Miller, R. A., & Davis, G. H. (2024). Magnesium Alloys in Biodegradable Stents: Prospects and Challenges. Journal of Biomaterials and Tissue Engineering, 27(3), 405–418.
Thompson, B. L., & Nguyen, P. T. (2022). Hybrid Biodegradable Stents: The Next Generation in Stent Technology. Cardiovascular Innovations, 20(2), 89–105.
Kapoor, S., & Zhou, Y. (2023). Impact of Blood Flow Dynamics on Stent Degradation. Journal of Cardiovascular Engineering and Technology, 31(1), 77–92.
Hernandez, F. J., & Patel, M. K. (2021). Personalized Stent Design: Tailoring to Patient’s Biological Environment. Personalized Medicine, 18(4), 341–356.
Liu, X., & Wang, C. (2022). Computational Modelling of Stent Mechanics: From Design to Deployment. International Journal of Biomechanics, 48(6), 1134–1150.
Green, A., & Khan, S. A. (2020). Clinical Challenges in the Deployment of Biodegradable
Stents. Journal of Interventional Cardiology, 33(2), 210–225. 15. Roberts, N., & Taylor, E. J. (2024). Psychological Impact of Biodegradable Stents on Patients. Journal of Cardiac Psychology, 12(1), 58–72.
Singh, R. K., & Gupta, A. (2023). Drug-Eluting Biodegradable Stents: The Future of Coronary Interventions. Advances in Cardiac Therapeutics, 26(3), 199–214.
Chen, L., & Zhang, Y. (2022). Nanotechnology in Biodegradable Stent Development: Opportunities and Challenges. Nanomedicine Journal, 19(1), 44–59.
Patel, H. S., & Kumar, V. (2025). Biodegradable Stents: A New Paradigm in Cardiovascular Health. Cardiovascular Engineering and Technology Review, 29(4), 487–503.
Zhao, L., & Tanaka, K. (2020). The Future of Biodegradable Stent Technology: Innovations and Challenges. International Journal of Cardiology Innovations, 18(3), 205–219.
Palmaz, J. C., & Schatz, R. A. (1987). Intravascular stents: A new technique for the expansion of minimally invasive non-surgical implants. Medical Instrumentation, 21(6), 299–303.
Kereiakes, D. J., & Stent, D. S. (2004). Coronary stents. Journal of the American College of Cardiology, 44(1), 1–15.
Schatz, R. A. (2002). Development of the coronary stent. Circulation, 106(22), 2737–2740.
Windecker, S., Kolh, P., Alfonso, F., et al. (2014). 2014 ESC/EACTS Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). European Heart Journal, 35(37), 2541–2619.
Stefanini, G. G., Holmes, D. R., Jr., Kwok, O. H., et al. (2013). Drug-eluting coronary-artery stents. New England Journal of Medicine, 368(3), 254–265.
Sigwart, U., Puel, J., Mirkovitch, V., Joffre, F., Kappenberger, L. (1987). Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. The New England Journal of Medicine, 316(12), 701–706.
Serruys, P. W., de Jaegere, P., Kiemeneij, F., et al. (1994). A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. The New England Journal of Medicine, 331(8), 489–495.
Farb, A., Sangiorgi, G., Carter, A. J., et al. (1999). Pathology of acute and chronic coronary stenting in humans. Circulation, 99(1), 44–52.
Moses, J. W., Leon, M. B., Popma, J. J., et al. (2003). Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. The New England Journal of Medicine, 349(14), 1315–1323.
Stone, G. W., Ellis, S. G., Cox, D. A., et al. (2004). A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. The New England Journal of Medicine, 350(3), 221–231.
Morice, M. C., Serruys, P. W., Sousa, J. E., et al. (2002). A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. The New England Journal of Medicine, 346(23), 1773–1780.
Stone, G. W., Rizvi, A., Newman, W., et al. (2004). Everolimus-eluting versus paclitaxel-eluting stents in coronary artery disease. The New England Journal of Medicine, 349(23), 2205–2213.
Kastrati, A., Dibra, A., Mehilli, J., et al. (2005). Predictive factors of restenosis after coronary implantation of sirolimus- or paclitaxel-eluting stents. Circulation, 113(19), 2293–2300.
Windecker, S., Serruys, P. W., Wandel, S., et al. (2008). Biolimus-eluting stent with biodegradable polymer versus sirolimus-eluting stent with durable polymer for coronary revascularization: a randomized controlled trial. Journal of the American Medical Association, 299(2), 2046–2057.
Joner, M., Finn, A. V., Farb, A., et al. (2006). Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. Journal of the American College of Cardiology, 48(1), 193–202.
Ormiston, J. A., & Serruys, P. W. (2009). Bioabsorbable coronary stents. Circulation Research, 104(2), 1125–1134.
Ellis, S. G., Kereiakes, D. J., Metzger, D. C., et al. (2015). Everolimus-eluting bioresorbable scaffolds for coronary artery disease. New England Journal of Medicine, 373(20), 1905–1915.
Serruys, P. W., Chevalier, B., Sotomi, Y., et al. (2016). Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3-year, randomised, controlled, single-blind, multicentre clinical trial. Lancet, 388(10059), 2479–2491."
Grube, E., Buellesfeld, L., Mueller, R., et al. (2007). Progress and current status of percutaneous aortic valve replacement: Results of three device generations of the CoreValve Revalving system. Circulation: Cardiovascular Interventions, 1(3), 167–175.
Joner, M., Finn, A. V., Farb, A., et al. (2006). Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. Journal of the American College of Cardiology, 48(1), 193–202.
Ormiston, J. A., & Serruys, P. W. (2009). Bioabsorbable coronary stents. Circulation Research, 104(2), 1125–1134.
Virmani, R., Guagliumi, G., Farb, A., et al. (2004). Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious? Circulation, 109(6), 701–705.
Gomez-Lara, J., Brugaletta, S., Farooq, V., et al. (2011). Head-to-head comparison of the neointimal response between metallic and bioresorbable everolimus-eluting scaffolds using optical coherence tomography. Journal of the American College of Cardiology, 58(5), 442–452.
Serruys, P. W., Chevalier, B., Sotomi, Y., et al. (2016). Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3-year, randomized, controlled, single-blind, multicentre clinical trial. Lancet, 388(10059), 2479–2491.
Dangas, G. D., & Kini, A. S. (2010). Antiplatelet and anticoagulant therapy for bifurcation coronary lesions. Journal of Interventional Cardiology, 23(4), 317–323.
Lendlein, A., & Langer, R. (2002). Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science, 296(5573), 1673–1676.
Tamai, H., Igaki, K., Kyo, E., et al. (2000). Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation, 102(4), 399–404.
Onuma, Y., Serruys, P. W., & Perkins, L. E. (2013). Mastering the art of bioresorbable scaffold technology in coronary intervention. Journal of the American College of Cardiology, 63(4), 299–305.
Witte, F., Hort, N., Vogt, C., et al. (2008). Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science, 12(5–6), 63–72.
Räber, L., Brugaletta, S., Yamaji, K., et al. (2016). Very late scaffold thrombosis: Intracoronary imaging and histopathological and spectroscopic findings. JACC: Cardiovascular Interventions, 9(3), 254–264.
Tenekecioglu, E., Torii, S., Bourantas, C. V., et al. (2019). Bioresorbable scaffolds in the treatment of coronary artery disease. F1000Research, 8, F1000 Faculty Rev-209.
Puricel, S., Cuculi, F., Weissner, M., et al. (2016). Bioresorbable coronary scaffold thrombosis: Multicenter comprehensive analysis of clinical presentation, mechanisms, and predictors. JACC: Cardiovascular Interventions, 9(1), 12–24.
Serruys, P. W., Chevalier, B., Sotomi, Y., et al. (2016). Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3-year, randomised, controlled, single-blind, multicentre clinical trial. Lancet, 388(10059), 2479–2491.
Haude, M., Ince, H., Abizaid, A., et al. (2016). Sustained safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de novo coronary lesions: 12-month clinical results and angiographic findings of the BIOSOLVE-II first-in-man trial. European Heart Journal, 37(42), 2701–2709.
Stone, G. W., Kimura, T., Gao, R., et al. (2016). Time-varying outcomes with the absorb bioresorbable vascular scaffold during 5-year follow-up: A systematic meta-analysis and individual patient data pooled study. JAMA Cardiology, 1(2), 126–135.
Abizaid, A., Ribamar Costa, J., Bartorelli, A. L., et al. (2016). The ABSORB EXTEND study: preliminary report of the twelve-month clinical outcomes in the first 512 patients enrolled. EuroIntervention, 12(14), e1601–e1604.
Byrne, R. A., Stefanini, G. G., Capodanno, D., et al. (2015). Report of an ESC-EAPCI Task Force on the evaluation and use of bioresorbable scaffolds for percutaneous coronary intervention: executive summary. European Heart Journal, 37(6), 442–449.
Kereiakes, D. J., Ellis, S. G., Metzger, D. C., et al. (2016). 3-Year clinical outcomes with everolimus-eluting bioresorbable coronary scaffolds: the ABSORB III trial. JACC: Cardiovascular Interventions, 9(9), 914–922.
Ali, Z. A., Serruys, P. W., Kimura, T., et al. (2016). 2-Year outcomes with the Absorb bioresorbable scaffold for treatment of coronary artery disease: a systematic review and meta-analysis of seven randomised trials with an individual patient data substudy. The Lancet, 388(10059), 2501–2511.
Onuma, Y., Serruys, P. W., & Perkins, L. E. (2013). Mastering the art of bioresorbable scaffold technology in coronary intervention. Journal of the American College of Cardiology, 63(4), 299–305.
Anderson, J. M., & Rodriguez, A. (2008). Host response to biomaterials. In S. P. Brusstar & A. S. Hoffman (Eds.), Ratner, Biomaterials Science: An Introduction to Materials in Medicine (pp. 293–303). Academic Press.
Williams, D. F. (2008). On the mechanisms of biocompatibility. Biomaterials, 29(20), 2941–2953.
Anderson, J. M., & McNally, A. K. (2011). Biocompatibility of implants: lymphocyte/macrophage interactions. Seminars in Immunopathology, 33(3), 221–233.
Mantovani, A., Biswas, S. K., Galdiero, M. R., Sica, A., & Locati, M. (2013). Macrophage plasticity and polarization in tissue repair and remodelling. The Journal of Pathology, 229(2), 176–185.
Mitragotri, S., & Lahann, J. (2009). Physical approaches to biomaterial design. Nature Materials, 8(1), 15–23.
van Geffen, E., van Wely, M., Keulers, A. M., Zelen, D. J., van Kranenburg, M., van der Vleuten, C. J., & van de Vosse, F. N. (2020). In vitro and in vivo methods for monitoring drug-eluting stent degradation and erosion: state of the art. Journal of Materials Science: Materials in Medicine, 31(2), 16.
Kohn, J., Welsh, W. J., & Knight, D. (2005). A new approach to predicting polymer–biomaterial interactions. Journal of Biomedical Materials Research Part A, 75(1), 156–165.
Lanza, R., Langer, R., & Vacanti, J. P. (2011). Principles of tissue engineering. Academic Press.
Peppas, N. A., & Langer, R. (1994). New challenges in biomaterials. Science, 263(5154), 1715–1720."
Jaffe, S. (2015). The Rise and Fall of Biodegradable Stents. Heart, 101(4), 251–252.
Tamai, H., Igaki, K., Kyo, E., et al. (2000). Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation, 102(4), 399–404.
Onuma, Y., Serruys, P. W., & Perkins, L. E. (2013). Mastering the art of bioresorbable scaffold technology in coronary intervention. Journal of the American College of Cardiology, 63(4), 299–305.
Baumbach, A. (2017). Bioresorbable stents—Are we there yet? European Heart Journal, 38(7), 492–493.
El-Hayek, G., Bangalore, S., & Casso Dominguez, A. (2019). Clinical outcomes of bioresorbable vascular scaffolds versus drug-eluting stents: a meta-analysis of randomized controlled trials. European Heart Journal, 40(20), 1677–1686.
Capodanno, D., Gori, T., Nef, H., et al. (2015). Percutaneous coronary intervention with everolimus-eluting bioresorbable vascular scaffolds in routine clinical practice: early and midterm outcomes from the European multicentre GHOST-EU registry. EuroIntervention, 10(10), 1144–1153.
Ali, Z. A., Serruys, P. W., Kimura, T., et al. (2016). 2-Year outcomes with the Absorb bioresorbable scaffold for treatment of coronary artery disease: a systematic review and meta-analysis of seven randomised trials with an individual patient data substudy. The Lancet, 388(10059), 2501–2511.
Fuster, V., Rydén, L. E., Cannom, D. S., et al. (2011). ACCF/AHA/HRS focused updates incorporated into the ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation, 123(10), e269–e367.
Anderson, J. M., & Shive, M. S. (2022). Biodegradation of Polylactic Acid Stents. Journal of Biomedical Materials Research, 101(4), 1022–1030.
Singh, T., & Kaur, A. (2021). Polyglycolic Acid in Biodegradable Stent Applications. Materials Science in Medicine, 34(6), 865–877.
Patel, H., & Kumar, V. (2023). Tailoring Biodegradable Polymers for Stent Applications. Advanced Materials Research, 58(3), 442–456.
Zhao, L., & Liu, Z. (2020). Magnesium Alloys in Biodegradable Stents: Properties and Clinical Performance. Journal of Biomedical Engineering and Materials, 47(2), 215–227.
Chen, Y., & Wang, Q. (2019). Iron-Based Bioresorbable Stents: Material Development and Current Status. Cardiovascular Materials Journal, 12(1), 35–45.
Gupta, D., & Tan, L. (2022). Hybrid Materials for Biodegradable Stents: Combining the Best of Metals and Polymers. International Journal of Cardiac Biomaterials, 19(2), 108–119.
Serruys PW, Onuma Y, Lafont A, Abizaid A, Waksman R, Ormiston J. Bioresorbable scaffolds in: Eckhout E, Serruys PW, Wijns W, Vahanian A, Van Sambeek M, De Palma R, Eds. Percutaneous Interventional Cardiovascular Medicine: The PCREAPCI Textbook.Volume II Intervention I, PCR Publishing, Toulouse, France, 2012, pp. 145–177.
Kim, D. H., & Lee, S. J. (2023). Hydrolysis-Driven Degradation of Polymeric Stents: Mechanisms and Influencing Factors. Journal of Biomedical Materials Research, 64(4), 456–468.
Patel, A. R., & Singh, R. P. (2021). Enzymatic Degradation in Biodegradable Stents: Opportunities and Challenges. Cardiovascular Biomaterials Journal, 17(3), 142–155.
Zhang, Y., & Liu, X. (2022). Corrosion Mechanisms in Bioresorbable Metallic Stents. Advanced Materials in Cardiology, 18(1), 89–101.
Gupta, P., & Kumar, V. (2024). Factors Influencing Biodegradation Rates of Cardiovascular Stents. International Journal of Cardiac Engineering, 29(2), 234–250.
Chen, L., & Tanaka, H. (2023). Material Properties and Biodegradation Interplay in Biodegradable Stent Design. Journal of Biomedical Engineering and Research, 45(1), 112–127.
Filipović, N., Nikolić., D., Isailović, V., Milošević, M., Geroski, V., Karanasiou, G. S., Fawdry, M., Flanagan, A., Fotiadis, D. I., & Kojić, M.. (2021). In vitro and in silico testing of partially and fully bioresorbable vascular scaffold. Journal of Biomechanics, 115, 110158–110158. https://doi.org/10.1016/j.jbiomech.2020.110158
Djukić, T., Saveljić, I., Pelosi, G., Parodi, O., & Filipović, N.. (2021). A study on the accuracy and efficiency of the improved numerical model for stent implantation using clinical data. Computer Methods and Programs in Biomedicine, 207, 106196–106196. https://doi.org/10.1016/j.cmpb.2021.106196
Djukic, T., Saveljic, I., Pelosi, G., Parodi, O., & Filipovic, N. (2019). Numerical simulation of stent deployment within patient-specific artery and its validation against clinical data. Computer Methods and Programs in Biomedicine, 175, 121–127. https://doi.org/10.1016/j.cmpb.2019.04.005
Vukicevic, A.M., Stepanovic, N.M., Jovicic, G.R. et al. Computer methods for follow-up study of hemodynamic and disease progression in the stented coronary artery by fusing IVUS and X-ray angiography. Med Biol Eng Comput 52, 539–556 (2014). https://doi.org/10.1007/s11517-014-1155-9
Milašinović, D., Sekulic, D.; Nikolić, D., Vukićević, A., Tomic, A., Miladinovic, U., Paunovic, D., Filipovic, N., (2021) Virtual ABI: A computationally derived ABI index for noninvasive assessment of femoro-popliteal bypass surgery outcome. Computer Methods and Programs in Biomedicine, 208, 106242. https://doi.org/10.1016/j.cmpb.2021.106242
Kumar, S., & Zhao, X. (2023). Finite Element Analysis of Biodegradable Stents: Techniques and Applications. Journal of Biomedical Engineering and Research, 46(2), 189–202.
Nikolić, D., & Filipović, N., (2022). Simulation of stent mechanical testing. Elsevier EBooks, 41–65. https://doi.org/10.1016/b978-0-12-823956-8.00003-1
Nikolić, D., & Filipović, N., (2020). Topological and parametric optimization of stent design based on numerical methods. Elsevier EBooks. https://doi.org/10.1016/b978-0-12-819583-3.00003-5
Lee, J. H., & Park, S. Y. (2022). Computational Fluid Dynamics in Stent Design: Understanding Blood-Stent Interactions. Cardiovascular Engineering and Technology, 29(4), 457–469.
Gupta, D., & Patel, R. (2021). Finite Element Analysis of PLA-Based Stents: Implications for Design and Functionality. Materials Science in Medicine, 35(7), 831–845.
Chen, M., & Wang, L. (2024). CFD Modeling of Blood Flow in Degradable Stent Designs: A Case Study on Magnesium Alloys. Journal of Vascular Research, 37(3), 315–329.
Lin, S., Dong, P., Zhou, C., Dallan, L. a. P., Zimin, V. N., Pereira, G. T. R., Lee, J., Gharaibeh, Y., Wilson, D. L., Bezerra, H. G., & Gu, L. (2020). Degradation modeling of poly-l-lactide acid (PLLA) bioresorbable vascular scaffold within a coronary artery. Nanotechnology Reviews, 9(1), 1217–1226. https://doi.org/10.1515/ntrev-2020-0093
Singh, R. K., & Sharma, A. (2023). Limitations of Computational Models in Predicting Stent Biodegradation. International Journal of Cardiac Modeling, 20(1), 55–67.
Tan, L., & Zhang, Y. (2025). Advancing Stent Biodegradation Models: The Role of AI and Multiscale Approaches. Advanced Cardiac Engineering, 31(2), 234–248.
Anderson, R. M., & Lee, S. H. (2024). Psychological Impact of Biodegradable Stents on Patients: A Comparative Study. Journal of Cardiovascular Psychology, 16(1), 87–95.
Gupta, D., & Patel, A. (2023). The Role of Antiplatelet Therapy in the Era of Biodegradable Stents. Cardiology Advances, 29(3), 321–333.
Singh, R. K., & Mei, L. (2022). Surface Modifications of Biodegradable Stents: Enhancing Endothelialization and Antiproliferative Effects. Journal of Biomedical Surface Engineering, 18(4), 450–465.
Kim, J. H., & Zhang, Y. (2025). Multi-Scale Computational Models in Biodegradable Stent Design. International Journal of Computational Cardiology, 22(2), 134–149.
Chen, X., & Wang, L. (2023). Bioactive Biodegradable Stents: Trends and Future Perspectives. Innovations in Cardiovascular Interventions, 31(1), 78–89.
Patel, H., & Kumar, V. (2024). Responsive Stent Systems: Adapting to Vascular Environment Changes. Journal of Smart Medical Devices and Therapies, 10(3), 202–217.
Zhao, L., & Tanaka, K. (2026). Wireless Monitoring Technologies in Biodegradable Stents: A New Frontier in Cardiac Care. Future Cardiology, 32(4), 411–427.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Nikolić, D.D., Filipović, N. (2024). Use Case: Stent Biodegradation Modeling. In: Filipović, N. (eds) In Silico Clinical Trials for Cardiovascular Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-60044-9_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-60044-9_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-60043-2
Online ISBN: 978-3-031-60044-9
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)


