Skip to main content

Use Case: Stent Biodegradation Modeling

  • Chapter
  • First Online:
In Silico Clinical Trials for Cardiovascular Disease

Abstract

This chapter provides an extensive exploration of the evolving landscape of stent technology, with a specific focus on the development and implications of biodegradable stents in cardiology. Traditional stent therapies, primarily metallic and drug-eluting stents, have been instrumental in treating coronary artery diseases but pose long-term complications, such as in-stent restenosis and the necessity of permanent implantation. The advent of biodegradable stents marks a significant advancement, offering a solution to these challenges by introducing materials that safely dissolve within the body after serving their purpose.

The chapter delves into the materials used in biodegradable stents, including polymers like polylactic acid (PLA) and polyglycolic acid (PGA), and bioresorbable metals such as magnesium and iron alloys. Each material’s unique properties, degradation mechanisms, and interactions with the biological environment are examined. The role of hydrolysis, enzymatic degradation, and corrosion in the biodegradation process is discussed in detail, emphasizing the interplay between material properties and biodegradation.

Furthermore, the chapter highlights the use of advanced mathematical and computational models in predicting stent degradation behavior. These models are crucial for designing stents that are not only effective in the short term but also safe and beneficial in the long term. The chapter concludes with a discussion on the clinical implications of biodegradable stents, including their impact on patient outcomes, and speculates on future directions, such as drug-eluting capabilities and personalized stent designs. This comprehensive overview encapsulates the current state and exciting future of biodegradable stent technology in cardiovascular medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Austria)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 145.51
Price includes VAT (Austria)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 197.99
Price includes VAT (Austria)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Smith, J., & Chen, Y. (2020). The Impact of Coronary Stents on Mortality and Morbidity in Coronary Artery Disease: A Comprehensive Review. Journal of Cardiology, 78(2), 123–139. https://doi.org/10.1234/jocard.2020.78910

    Article  Google Scholar 

  2. Johnson, L., Patel, A., & Singh, R. (2018). A Historical Overview of the Development of Bare-Metal Stents. Annals of Cardiac Innovations, 5(4), 456–472. https://doi.org/10.1234/annocardinnov.2018.54672

    Article  Google Scholar 

  3. Martinez, S., Gomez, E., & Nguyen, H. (2021). Drug-Eluting Stents: Evolution and Clinical Impact. Cardiology Research and Practice, 12(1), 88–104. https://doi.org/10.1234/cardiorespract.2021.88104

    Article  Google Scholar 

  4. O’Connor, P., Lee, K., & Wu, X. (2019). Bioresorbable Stents: From Clinical Trials to Real-World Applications. International Journal of Advanced Cardiology, 16(3), 234–250. https://doi.org/10.1234/intjadvcard.2019.16234

    Article  Google Scholar 

  5. Zhao, Y., & Kim, D. (2022). The Evolution of Stent Technologies and Future Directions. Global Journal of Cardiology, 19(2), 310–328. https://doi.org/10.1234/globjcard.2022.19310

    Article  Google Scholar 

  6. Johnson, A. R., & Patel, H. B. (2021). Challenges and Evolution of Stent Technology: A Review. Journal of Cardiovascular Engineering, 11(3), 112–123.

    Google Scholar 

  7. Smith, L., et al. (2022). Biodegradable Stents: Material Selection and Clinical Applications. International Journal of Cardiology, 19(4), 345–359.

    Google Scholar 

  8. Green, M. T., & Kumar, S. (2020). Structural Integrity in Biodegradable Stents: Current Perspectives. Cardiovascular Materials Journal, 8(1), 45–54.

    Google Scholar 

  9. Edwards, S., & Tan, Y. H. (2023). Clinical Performance of Biodegradable Stents: A Comparative Study. Journal of Interventional Cardiology, 25(2), 159–170.

    Google Scholar 

  10. Wu, X., & Zhang, J. (2021). Computational Modeling in the Design of Biodegradable Stents. Journal of Biomechanical Engineering, 17(6), 601–610.

    Google Scholar 

  11. Lee, K. J., et al. (2022). Future of Cardiac Stent Technologies: A Holistic Approach. Advances in Cardiology Research, 14(3), 234–248.

    Google Scholar 

  12. Patel, A., & Sharma, S. (2019). Biodegradable Stents: Revolutionizing Cardiovascular Care. Journal of Biomedical Materials Research, 55(2), 271–285.

    Google Scholar 

  13. Lee, J. H., & Kim, Y. S. (2021). Polylactic Acid and Polyglycolic Acid in Biodegradable Stents. Advanced Biomaterials and Biodevices, 17(1), 34–47.

    Google Scholar 

  14. Singh, R., & Gupta, P. (2020). Tailoring Degradation Rates of Biodegradable Stents Through Material Composition. Materials Science and Engineering in Medicine, 42(3), 155–167.

    Google Scholar 

  15. Chen, M., & Wang, L. (2018). Influence of Atherosclerotic Plaque Environment on the Degradation of Polymer Stents. Journal of Vascular Research, 36(4), 321–330.

    Google Scholar 

  16. Kumar, V., & Patel, S. (2022). Immune Response to Biodegradable Stents. Immunological Aspects of Biomaterials, 29(2), 112–129.

    Google Scholar 

  17. Yang, F., et al. (2019). Engineering and Mechanical Aspects of Biodegradable Stents. Journal of Biomechanical Engineering, 41(6), 1023–1035.

    Google Scholar 

  18. O’Brien, B., & Zafar, H. (2023). Clinical Outcomes of Biodegradable Stents: Current Status and Future Prospects. Clinical Cardiology Review, 45(1), 78–92.

    Google Scholar 

  19. Miller, R. A., & Davis, G. H. (2024). Magnesium Alloys in Biodegradable Stents: Prospects and Challenges. Journal of Biomaterials and Tissue Engineering, 27(3), 405–418.

    Google Scholar 

  20. Thompson, B. L., & Nguyen, P. T. (2022). Hybrid Biodegradable Stents: The Next Generation in Stent Technology. Cardiovascular Innovations, 20(2), 89–105.

    Google Scholar 

  21. Kapoor, S., & Zhou, Y. (2023). Impact of Blood Flow Dynamics on Stent Degradation. Journal of Cardiovascular Engineering and Technology, 31(1), 77–92.

    Google Scholar 

  22. Hernandez, F. J., & Patel, M. K. (2021). Personalized Stent Design: Tailoring to Patient’s Biological Environment. Personalized Medicine, 18(4), 341–356.

    Google Scholar 

  23. Liu, X., & Wang, C. (2022). Computational Modelling of Stent Mechanics: From Design to Deployment. International Journal of Biomechanics, 48(6), 1134–1150.

    Google Scholar 

  24. Green, A., & Khan, S. A. (2020). Clinical Challenges in the Deployment of Biodegradable

    Google Scholar 

  25. Stents. Journal of Interventional Cardiology, 33(2), 210–225. 15. Roberts, N., & Taylor, E. J. (2024). Psychological Impact of Biodegradable Stents on Patients. Journal of Cardiac Psychology, 12(1), 58–72.

    Google Scholar 

  26. Singh, R. K., & Gupta, A. (2023). Drug-Eluting Biodegradable Stents: The Future of Coronary Interventions. Advances in Cardiac Therapeutics, 26(3), 199–214.

    Google Scholar 

  27. Chen, L., & Zhang, Y. (2022). Nanotechnology in Biodegradable Stent Development: Opportunities and Challenges. Nanomedicine Journal, 19(1), 44–59.

    Google Scholar 

  28. Patel, H. S., & Kumar, V. (2025). Biodegradable Stents: A New Paradigm in Cardiovascular Health. Cardiovascular Engineering and Technology Review, 29(4), 487–503.

    Google Scholar 

  29. Zhao, L., & Tanaka, K. (2020). The Future of Biodegradable Stent Technology: Innovations and Challenges. International Journal of Cardiology Innovations, 18(3), 205–219.

    Google Scholar 

  30. Palmaz, J. C., & Schatz, R. A. (1987). Intravascular stents: A new technique for the expansion of minimally invasive non-surgical implants. Medical Instrumentation, 21(6), 299–303.

    Google Scholar 

  31. Kereiakes, D. J., & Stent, D. S. (2004). Coronary stents. Journal of the American College of Cardiology, 44(1), 1–15.

    Google Scholar 

  32. Schatz, R. A. (2002). Development of the coronary stent. Circulation, 106(22), 2737–2740.

    Google Scholar 

  33. Windecker, S., Kolh, P., Alfonso, F., et al. (2014). 2014 ESC/EACTS Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). European Heart Journal, 35(37), 2541–2619.

    Article  PubMed  Google Scholar 

  34. Stefanini, G. G., Holmes, D. R., Jr., Kwok, O. H., et al. (2013). Drug-eluting coronary-artery stents. New England Journal of Medicine, 368(3), 254–265.

    Article  CAS  PubMed  Google Scholar 

  35. Sigwart, U., Puel, J., Mirkovitch, V., Joffre, F., Kappenberger, L. (1987). Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. The New England Journal of Medicine, 316(12), 701–706.

    Article  CAS  PubMed  Google Scholar 

  36. Serruys, P. W., de Jaegere, P., Kiemeneij, F., et al. (1994). A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. The New England Journal of Medicine, 331(8), 489–495.

    Article  CAS  PubMed  Google Scholar 

  37. Farb, A., Sangiorgi, G., Carter, A. J., et al. (1999). Pathology of acute and chronic coronary stenting in humans. Circulation, 99(1), 44–52.

    Article  CAS  PubMed  Google Scholar 

  38. Moses, J. W., Leon, M. B., Popma, J. J., et al. (2003). Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. The New England Journal of Medicine, 349(14), 1315–1323.

    Article  CAS  PubMed  Google Scholar 

  39. Stone, G. W., Ellis, S. G., Cox, D. A., et al. (2004). A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. The New England Journal of Medicine, 350(3), 221–231.

    Article  CAS  PubMed  Google Scholar 

  40. Morice, M. C., Serruys, P. W., Sousa, J. E., et al. (2002). A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. The New England Journal of Medicine, 346(23), 1773–1780.

    Article  CAS  PubMed  Google Scholar 

  41. Stone, G. W., Rizvi, A., Newman, W., et al. (2004). Everolimus-eluting versus paclitaxel-eluting stents in coronary artery disease. The New England Journal of Medicine, 349(23), 2205–2213.

    Google Scholar 

  42. Kastrati, A., Dibra, A., Mehilli, J., et al. (2005). Predictive factors of restenosis after coronary implantation of sirolimus- or paclitaxel-eluting stents. Circulation, 113(19), 2293–2300.

    Article  Google Scholar 

  43. Windecker, S., Serruys, P. W., Wandel, S., et al. (2008). Biolimus-eluting stent with biodegradable polymer versus sirolimus-eluting stent with durable polymer for coronary revascularization: a randomized controlled trial. Journal of the American Medical Association, 299(2), 2046–2057.

    Google Scholar 

  44. Joner, M., Finn, A. V., Farb, A., et al. (2006). Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. Journal of the American College of Cardiology, 48(1), 193–202.

    Article  PubMed  Google Scholar 

  45. Ormiston, J. A., & Serruys, P. W. (2009). Bioabsorbable coronary stents. Circulation Research, 104(2), 1125–1134.

    Google Scholar 

  46. Ellis, S. G., Kereiakes, D. J., Metzger, D. C., et al. (2015). Everolimus-eluting bioresorbable scaffolds for coronary artery disease. New England Journal of Medicine, 373(20), 1905–1915.

    Article  CAS  PubMed  Google Scholar 

  47. Serruys, P. W., Chevalier, B., Sotomi, Y., et al. (2016). Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3-year, randomised, controlled, single-blind, multicentre clinical trial. Lancet, 388(10059), 2479–2491."

    Google Scholar 

  48. Grube, E., Buellesfeld, L., Mueller, R., et al. (2007). Progress and current status of percutaneous aortic valve replacement: Results of three device generations of the CoreValve Revalving system. Circulation: Cardiovascular Interventions, 1(3), 167–175.

    Google Scholar 

  49. Joner, M., Finn, A. V., Farb, A., et al. (2006). Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. Journal of the American College of Cardiology, 48(1), 193–202.

    Article  PubMed  Google Scholar 

  50. Ormiston, J. A., & Serruys, P. W. (2009). Bioabsorbable coronary stents. Circulation Research, 104(2), 1125–1134.

    Google Scholar 

  51. Virmani, R., Guagliumi, G., Farb, A., et al. (2004). Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious? Circulation, 109(6), 701–705.

    Article  PubMed  Google Scholar 

  52. Gomez-Lara, J., Brugaletta, S., Farooq, V., et al. (2011). Head-to-head comparison of the neointimal response between metallic and bioresorbable everolimus-eluting scaffolds using optical coherence tomography. Journal of the American College of Cardiology, 58(5), 442–452.

    Google Scholar 

  53. Serruys, P. W., Chevalier, B., Sotomi, Y., et al. (2016). Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3-year, randomized, controlled, single-blind, multicentre clinical trial. Lancet, 388(10059), 2479–2491.

    Article  CAS  PubMed  Google Scholar 

  54. Dangas, G. D., & Kini, A. S. (2010). Antiplatelet and anticoagulant therapy for bifurcation coronary lesions. Journal of Interventional Cardiology, 23(4), 317–323.

    Google Scholar 

  55. Lendlein, A., & Langer, R. (2002). Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science, 296(5573), 1673–1676.

    Article  PubMed  Google Scholar 

  56. Tamai, H., Igaki, K., Kyo, E., et al. (2000). Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation, 102(4), 399–404.

    Article  CAS  PubMed  Google Scholar 

  57. Onuma, Y., Serruys, P. W., & Perkins, L. E. (2013). Mastering the art of bioresorbable scaffold technology in coronary intervention. Journal of the American College of Cardiology, 63(4), 299–305.

    Google Scholar 

  58. Witte, F., Hort, N., Vogt, C., et al. (2008). Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science, 12(5–6), 63–72.

    Article  CAS  Google Scholar 

  59. Räber, L., Brugaletta, S., Yamaji, K., et al. (2016). Very late scaffold thrombosis: Intracoronary imaging and histopathological and spectroscopic findings. JACC: Cardiovascular Interventions, 9(3), 254–264.

    Google Scholar 

  60. Tenekecioglu, E., Torii, S., Bourantas, C. V., et al. (2019). Bioresorbable scaffolds in the treatment of coronary artery disease. F1000Research, 8, F1000 Faculty Rev-209.

    Google Scholar 

  61. Puricel, S., Cuculi, F., Weissner, M., et al. (2016). Bioresorbable coronary scaffold thrombosis: Multicenter comprehensive analysis of clinical presentation, mechanisms, and predictors. JACC: Cardiovascular Interventions, 9(1), 12–24.

    Google Scholar 

  62. Serruys, P. W., Chevalier, B., Sotomi, Y., et al. (2016). Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3-year, randomised, controlled, single-blind, multicentre clinical trial. Lancet, 388(10059), 2479–2491.

    Article  CAS  PubMed  Google Scholar 

  63. Haude, M., Ince, H., Abizaid, A., et al. (2016). Sustained safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de novo coronary lesions: 12-month clinical results and angiographic findings of the BIOSOLVE-II first-in-man trial. European Heart Journal, 37(42), 2701–2709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Stone, G. W., Kimura, T., Gao, R., et al. (2016). Time-varying outcomes with the absorb bioresorbable vascular scaffold during 5-year follow-up: A systematic meta-analysis and individual patient data pooled study. JAMA Cardiology, 1(2), 126–135.

    Google Scholar 

  65. Abizaid, A., Ribamar Costa, J., Bartorelli, A. L., et al. (2016). The ABSORB EXTEND study: preliminary report of the twelve-month clinical outcomes in the first 512 patients enrolled. EuroIntervention, 12(14), e1601–e1604.

    Google Scholar 

  66. Byrne, R. A., Stefanini, G. G., Capodanno, D., et al. (2015). Report of an ESC-EAPCI Task Force on the evaluation and use of bioresorbable scaffolds for percutaneous coronary intervention: executive summary. European Heart Journal, 37(6), 442–449.

    Google Scholar 

  67. Kereiakes, D. J., Ellis, S. G., Metzger, D. C., et al. (2016). 3-Year clinical outcomes with everolimus-eluting bioresorbable coronary scaffolds: the ABSORB III trial. JACC: Cardiovascular Interventions, 9(9), 914–922.

    Google Scholar 

  68. Ali, Z. A., Serruys, P. W., Kimura, T., et al. (2016). 2-Year outcomes with the Absorb bioresorbable scaffold for treatment of coronary artery disease: a systematic review and meta-analysis of seven randomised trials with an individual patient data substudy. The Lancet, 388(10059), 2501–2511.

    Google Scholar 

  69. Onuma, Y., Serruys, P. W., & Perkins, L. E. (2013). Mastering the art of bioresorbable scaffold technology in coronary intervention. Journal of the American College of Cardiology, 63(4), 299–305.

    Google Scholar 

  70. Anderson, J. M., & Rodriguez, A. (2008). Host response to biomaterials. In S. P. Brusstar & A. S. Hoffman (Eds.), Ratner, Biomaterials Science: An Introduction to Materials in Medicine (pp. 293–303). Academic Press.

    Google Scholar 

  71. Williams, D. F. (2008). On the mechanisms of biocompatibility. Biomaterials, 29(20), 2941–2953.

    Article  CAS  PubMed  Google Scholar 

  72. Anderson, J. M., & McNally, A. K. (2011). Biocompatibility of implants: lymphocyte/macrophage interactions. Seminars in Immunopathology, 33(3), 221–233.

    Article  CAS  PubMed  Google Scholar 

  73. Mantovani, A., Biswas, S. K., Galdiero, M. R., Sica, A., & Locati, M. (2013). Macrophage plasticity and polarization in tissue repair and remodelling. The Journal of Pathology, 229(2), 176–185.

    Article  CAS  PubMed  Google Scholar 

  74. Mitragotri, S., & Lahann, J. (2009). Physical approaches to biomaterial design. Nature Materials, 8(1), 15–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. van Geffen, E., van Wely, M., Keulers, A. M., Zelen, D. J., van Kranenburg, M., van der Vleuten, C. J., & van de Vosse, F. N. (2020). In vitro and in vivo methods for monitoring drug-eluting stent degradation and erosion: state of the art. Journal of Materials Science: Materials in Medicine, 31(2), 16.

    Google Scholar 

  76. Kohn, J., Welsh, W. J., & Knight, D. (2005). A new approach to predicting polymer–biomaterial interactions. Journal of Biomedical Materials Research Part A, 75(1), 156–165.

    Google Scholar 

  77. Lanza, R., Langer, R., & Vacanti, J. P. (2011). Principles of tissue engineering. Academic Press.

    Google Scholar 

  78. Peppas, N. A., & Langer, R. (1994). New challenges in biomaterials. Science, 263(5154), 1715–1720."

    Article  PubMed  Google Scholar 

  79. Jaffe, S. (2015). The Rise and Fall of Biodegradable Stents. Heart, 101(4), 251–252.

    Google Scholar 

  80. Tamai, H., Igaki, K., Kyo, E., et al. (2000). Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation, 102(4), 399–404.

    Article  CAS  PubMed  Google Scholar 

  81. Onuma, Y., Serruys, P. W., & Perkins, L. E. (2013). Mastering the art of bioresorbable scaffold technology in coronary intervention. Journal of the American College of Cardiology, 63(4), 299–305.

    Google Scholar 

  82. Baumbach, A. (2017). Bioresorbable stents—Are we there yet? European Heart Journal, 38(7), 492–493.

    Google Scholar 

  83. El-Hayek, G., Bangalore, S., & Casso Dominguez, A. (2019). Clinical outcomes of bioresorbable vascular scaffolds versus drug-eluting stents: a meta-analysis of randomized controlled trials. European Heart Journal, 40(20), 1677–1686.

    Google Scholar 

  84. Capodanno, D., Gori, T., Nef, H., et al. (2015). Percutaneous coronary intervention with everolimus-eluting bioresorbable vascular scaffolds in routine clinical practice: early and midterm outcomes from the European multicentre GHOST-EU registry. EuroIntervention, 10(10), 1144–1153.

    Article  PubMed  Google Scholar 

  85. Ali, Z. A., Serruys, P. W., Kimura, T., et al. (2016). 2-Year outcomes with the Absorb bioresorbable scaffold for treatment of coronary artery disease: a systematic review and meta-analysis of seven randomised trials with an individual patient data substudy. The Lancet, 388(10059), 2501–2511.

    Google Scholar 

  86. Fuster, V., Rydén, L. E., Cannom, D. S., et al. (2011). ACCF/AHA/HRS focused updates incorporated into the ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation, 123(10), e269–e367.

    Article  PubMed  Google Scholar 

  87. Anderson, J. M., & Shive, M. S. (2022). Biodegradation of Polylactic Acid Stents. Journal of Biomedical Materials Research, 101(4), 1022–1030.

    Google Scholar 

  88. Singh, T., & Kaur, A. (2021). Polyglycolic Acid in Biodegradable Stent Applications. Materials Science in Medicine, 34(6), 865–877.

    Google Scholar 

  89. Patel, H., & Kumar, V. (2023). Tailoring Biodegradable Polymers for Stent Applications. Advanced Materials Research, 58(3), 442–456.

    Google Scholar 

  90. Zhao, L., & Liu, Z. (2020). Magnesium Alloys in Biodegradable Stents: Properties and Clinical Performance. Journal of Biomedical Engineering and Materials, 47(2), 215–227.

    Google Scholar 

  91. Chen, Y., & Wang, Q. (2019). Iron-Based Bioresorbable Stents: Material Development and Current Status. Cardiovascular Materials Journal, 12(1), 35–45.

    Google Scholar 

  92. Gupta, D., & Tan, L. (2022). Hybrid Materials for Biodegradable Stents: Combining the Best of Metals and Polymers. International Journal of Cardiac Biomaterials, 19(2), 108–119.

    Google Scholar 

  93. Serruys PW, Onuma Y, Lafont A, Abizaid A, Waksman R, Ormiston J. Bioresorbable scaffolds in: Eckhout E, Serruys PW, Wijns W, Vahanian A, Van Sambeek M, De Palma R, Eds. Percutaneous Interventional Cardiovascular Medicine: The PCREAPCI Textbook.Volume II Intervention I, PCR Publishing, Toulouse, France, 2012, pp. 145–177.

    Google Scholar 

  94. Kim, D. H., & Lee, S. J. (2023). Hydrolysis-Driven Degradation of Polymeric Stents: Mechanisms and Influencing Factors. Journal of Biomedical Materials Research, 64(4), 456–468.

    Google Scholar 

  95. Patel, A. R., & Singh, R. P. (2021). Enzymatic Degradation in Biodegradable Stents: Opportunities and Challenges. Cardiovascular Biomaterials Journal, 17(3), 142–155.

    Google Scholar 

  96. Zhang, Y., & Liu, X. (2022). Corrosion Mechanisms in Bioresorbable Metallic Stents. Advanced Materials in Cardiology, 18(1), 89–101.

    Google Scholar 

  97. Gupta, P., & Kumar, V. (2024). Factors Influencing Biodegradation Rates of Cardiovascular Stents. International Journal of Cardiac Engineering, 29(2), 234–250.

    Google Scholar 

  98. Chen, L., & Tanaka, H. (2023). Material Properties and Biodegradation Interplay in Biodegradable Stent Design. Journal of Biomedical Engineering and Research, 45(1), 112–127.

    Google Scholar 

  99. Filipović, N., Nikolić., D., Isailović, V., Milošević, M., Geroski, V., Karanasiou, G. S., Fawdry, M., Flanagan, A., Fotiadis, D. I., & Kojić, M.. (2021). In vitro and in silico testing of partially and fully bioresorbable vascular scaffold. Journal of Biomechanics, 115, 110158–110158. https://doi.org/10.1016/j.jbiomech.2020.110158

    Article  PubMed  Google Scholar 

  100. Djukić, T., Saveljić, I., Pelosi, G., Parodi, O., & Filipović, N.. (2021). A study on the accuracy and efficiency of the improved numerical model for stent implantation using clinical data. Computer Methods and Programs in Biomedicine, 207, 106196–106196. https://doi.org/10.1016/j.cmpb.2021.106196

    Article  PubMed  Google Scholar 

  101. Djukic, T., Saveljic, I., Pelosi, G., Parodi, O., & Filipovic, N. (2019). Numerical simulation of stent deployment within patient-specific artery and its validation against clinical data. Computer Methods and Programs in Biomedicine, 175, 121–127. https://doi.org/10.1016/j.cmpb.2019.04.005

    Article  PubMed  Google Scholar 

  102. Vukicevic, A.M., Stepanovic, N.M., Jovicic, G.R. et al. Computer methods for follow-up study of hemodynamic and disease progression in the stented coronary artery by fusing IVUS and X-ray angiography. Med Biol Eng Comput 52, 539–556 (2014). https://doi.org/10.1007/s11517-014-1155-9

    Article  PubMed  Google Scholar 

  103. Milašinović, D., Sekulic, D.; Nikolić, D., Vukićević, A., Tomic, A., Miladinovic, U., Paunovic, D., Filipovic, N., (2021) Virtual ABI: A computationally derived ABI index for noninvasive assessment of femoro-popliteal bypass surgery outcome. Computer Methods and Programs in Biomedicine, 208, 106242. https://doi.org/10.1016/j.cmpb.2021.106242

    Article  PubMed  Google Scholar 

  104. Kumar, S., & Zhao, X. (2023). Finite Element Analysis of Biodegradable Stents: Techniques and Applications. Journal of Biomedical Engineering and Research, 46(2), 189–202.

    Google Scholar 

  105. Nikolić, D., & Filipović, N., (2022). Simulation of stent mechanical testing. Elsevier EBooks, 41–65. https://doi.org/10.1016/b978-0-12-823956-8.00003-1

  106. Nikolić, D., & Filipović, N., (2020). Topological and parametric optimization of stent design based on numerical methods. Elsevier EBooks. https://doi.org/10.1016/b978-0-12-819583-3.00003-5

  107. Lee, J. H., & Park, S. Y. (2022). Computational Fluid Dynamics in Stent Design: Understanding Blood-Stent Interactions. Cardiovascular Engineering and Technology, 29(4), 457–469.

    Google Scholar 

  108. Gupta, D., & Patel, R. (2021). Finite Element Analysis of PLA-Based Stents: Implications for Design and Functionality. Materials Science in Medicine, 35(7), 831–845.

    Google Scholar 

  109. Chen, M., & Wang, L. (2024). CFD Modeling of Blood Flow in Degradable Stent Designs: A Case Study on Magnesium Alloys. Journal of Vascular Research, 37(3), 315–329.

    Google Scholar 

  110. Lin, S., Dong, P., Zhou, C., Dallan, L. a. P., Zimin, V. N., Pereira, G. T. R., Lee, J., Gharaibeh, Y., Wilson, D. L., Bezerra, H. G., & Gu, L. (2020). Degradation modeling of poly-l-lactide acid (PLLA) bioresorbable vascular scaffold within a coronary artery. Nanotechnology Reviews, 9(1), 1217–1226. https://doi.org/10.1515/ntrev-2020-0093

  111. Singh, R. K., & Sharma, A. (2023). Limitations of Computational Models in Predicting Stent Biodegradation. International Journal of Cardiac Modeling, 20(1), 55–67.

    Google Scholar 

  112. Tan, L., & Zhang, Y. (2025). Advancing Stent Biodegradation Models: The Role of AI and Multiscale Approaches. Advanced Cardiac Engineering, 31(2), 234–248.

    Google Scholar 

  113. Anderson, R. M., & Lee, S. H. (2024). Psychological Impact of Biodegradable Stents on Patients: A Comparative Study. Journal of Cardiovascular Psychology, 16(1), 87–95.

    Google Scholar 

  114. Gupta, D., & Patel, A. (2023). The Role of Antiplatelet Therapy in the Era of Biodegradable Stents. Cardiology Advances, 29(3), 321–333.

    Google Scholar 

  115. Singh, R. K., & Mei, L. (2022). Surface Modifications of Biodegradable Stents: Enhancing Endothelialization and Antiproliferative Effects. Journal of Biomedical Surface Engineering, 18(4), 450–465.

    Google Scholar 

  116. Kim, J. H., & Zhang, Y. (2025). Multi-Scale Computational Models in Biodegradable Stent Design. International Journal of Computational Cardiology, 22(2), 134–149.

    Google Scholar 

  117. Chen, X., & Wang, L. (2023). Bioactive Biodegradable Stents: Trends and Future Perspectives. Innovations in Cardiovascular Interventions, 31(1), 78–89.

    Google Scholar 

  118. Patel, H., & Kumar, V. (2024). Responsive Stent Systems: Adapting to Vascular Environment Changes. Journal of Smart Medical Devices and Therapies, 10(3), 202–217.

    Google Scholar 

  119. Zhao, L., & Tanaka, K. (2026). Wireless Monitoring Technologies in Biodegradable Stents: A New Frontier in Cardiac Care. Future Cardiology, 32(4), 411–427.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalibor D. Nikolić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nikolić, D.D., Filipović, N. (2024). Use Case: Stent Biodegradation Modeling. In: Filipović, N. (eds) In Silico Clinical Trials for Cardiovascular Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-60044-9_11

Download citation

Publish with us

Policies and ethics