Skip to main content

Online Combinatorial Assignment in Independence Systems

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2024)

Abstract

We consider an online multi-weighted generalization of several classic online optimization problems called the online combinatorial assignment problem. We are given an independence system over a ground set of elements and agents that arrive online one by one. Upon arrival, each agent reveals a weight function over the elements of the ground set. If the independence system is given by the matchings of a hypergraph, we recover the combinatorial auction problem, where every node represents an item to be sold, and every edge represents a bundle of items. For combinatorial auctions, Kesselheim et al. showed upper bounds of \(O(\log \log (k)/\log (k))\) and \(O(\log \log (n)/\log (n))\) on the competitiveness of any online algorithm, even in the random order model, where k is the maximum bundle size and n is the number of items. We provide an exponential improvement by giving upper bounds of \(O(\log (k)/k)\), and \(O(\log (n)/\sqrt{n})\) for the prophet IID setting. Furthermore, using linear programming, we provide new and improved guarantees for the k-bounded online combinatorial auction problem (i.e., bundles of size at most k). We show a \((1-e^{-k})/k\)-competitive algorithm in the prophet IID model, a \(1/(k+1)\)-competitive algorithm in the prophet-secretary model using a single sample per agent, and a \(k^{-k/(k-1)}\)-competitive algorithm in the secretary model. Our algorithms run in polynomial time and work in more general independence systems where the offline combinatorial assignment problem admits the existence of a polynomial-time randomized algorithm that we call certificate sampler. These systems include some classes of matroids, matroid intersections, and matchoids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamczyk, M., Włodarczyk, M.: Random order contention resolution schemes. In: FOCS 2018, pp. 790–801 (2018)

    Google Scholar 

  2. Assadi, S., Kesselheim, T., Singla, S.: Improved truthful mechanisms for subadditive combinatorial auctions: breaking the logarithmic barrier. In: SODA 2021, pp. 653–661 (2021)

    Google Scholar 

  3. Assadi, S., Singla, S.: Improved truthful mechanisms for combinatorial auctions with submodular bidders. ACM SIGecom Exch. 18(1), 19–27 (2020)

    Article  Google Scholar 

  4. Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: Matroid secretary problems. J. ACM 65(6), 1–26 (2018)

    Google Scholar 

  5. Babaioff, M., Lucier, B., Nisan, N., Paes Leme, R.: On the efficiency of the walrasian mechanism. In: EC 2014, pp. 783–800 (2014)

    Google Scholar 

  6. Baldwin, E., Klemperer, P.: Understanding preferences: demand types, and the existence of equilibrium with indivisibilities. Econometrica 87(3), 867–932 (2019)

    Google Scholar 

  7. Brubach, B., Grammel, N., Ma, W., Srinivasan, A.: Improved guarantees for offline stochastic matching via new ordered contention resolution schemes. In: NeurIPS 2021, vol. 32, pp. 27184–27195 (2021)

    Google Scholar 

  8. Correa, J., Cristi, A.: A constant factor prophet inequality for online combinatorial auctions. In: STOC 2023, pp. 686–697 (2023)

    Google Scholar 

  9. Correa, J., Cristi, A., Fielbaum, A., Pollner, T., Weinberg, S.M.: Optimal item pricing in online combinatorial auctions. In: IPCO 2022, pp. 126–139 (2022)

    Google Scholar 

  10. Dobzinski, S.: Breaking the logarithmic barrier for truthful combinatorial auctions with submodular bidders. In: STOC 2016, pp. 940–948 (2016)

    Google Scholar 

  11. Dobzinski, S., Nisan, N., Schapira, M.: Approximation algorithms for combinatorial auctions with complement-free bidders. In: STOC 2005, pp. 610–618 (2005)

    Google Scholar 

  12. Dütting, P., Feldman, M., Kesselheim, T., Lucier, B.: Prophet inequalities made easy: stochastic optimization by pricing nonstochastic inputs. SIAM J. Comput. 49(3), 540–582 (2020)

    Article  MathSciNet  Google Scholar 

  13. Dynkin, E.B.: The optimum choice of the instant for stopping a Markov process. Soviet Math. Dokl 4, 627–629 (1963)

    Google Scholar 

  14. Edmonds, J.: Matroid intersection. Ann. Discret. Math. 4, 39–49. Elsevier (1979)

    Google Scholar 

  15. Ehsani, S., Hajiaghayi, M.T., Kesselheim, T., Singla, S.: Prophet secretary for combinatorial auctions and matroids. In: SODA 2018, pp. 700–714 (2018)

    Google Scholar 

  16. Ezra, T., Feldman, M., Gravin, N., Tang, Z.G.: Online stochastic max-weight matching: prophet inequality for vertex and edge arrival models. In: EC 2020, pp. 769–787 (2020)

    Google Scholar 

  17. Ezra, T., Feldman, M., Gravin, N., Tang, Z.G.: General graphs are easier than bipartite graphs: tight bounds for secretary matching. In: EC 2022, pp. 1148–1177 (2022)

    Google Scholar 

  18. Feldman, M., Gravin, N., Lucier, B.: Combinatorial walrasian equilibrium. In: STOC 2013, pp. 61–70 (2013)

    Google Scholar 

  19. Feldman, M., Svensson, O., Zenklusen, R.: A simple O(loglog(rank))-competitive algorithm for the matroid secretary problem. Math. Oper. Res. 43(2), 638–650 (2018)

    Google Scholar 

  20. Feldman, M., Svensson, O., Zenklusen, R.: Online contention resolution schemes with applications to bayesian selection problems. SIAM J. Comput. 50(2), 255–300 (2021)

    Google Scholar 

  21. Gilbert, J.P., Mosteller, F.: Recognizing the maximum of a sequence. J. Am. Stat. Assoc. 61, 35–76 (1966)

    Article  MathSciNet  Google Scholar 

  22. Hill, T.P., Kertz, R.P.: Comparisons of stop rule and supremum expectations of i.i.d. random variables. Ann. Probab. 10, 336–345 (1982)

    Google Scholar 

  23. Jenkyns, T.A.: Matchoids: a generalization of matchings and matroids. PhD thesis, University of Waterloo (1975)

    Google Scholar 

  24. Karp, R.M.: Reducibility among combinatorial problems. In: Junger, M., et al. (eds.) 50 Years of Integer Programming 1958–2008. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-540-68279-0_8

  25. Kertz, R.P.: Stop rule and supremum expectations of i.i.d. random variables: a complete comparison by conjugate duality. J. Multivar. Anal. 19, 88–112 (1986)

    Google Scholar 

  26. Kesselheim, T., Radke, K., Tönnis, A., Vöcking, B.: An optimal online algorithm for weighted bipartite matching and extensions to combinatorial auctions. In: ESA 2013, pp. 589–600 (2013)

    Google Scholar 

  27. Kleinberg, R., Weinberg, S.M.: Matroid prophet inequalities and applications to multi-dimensional mechanism design. Games Econ. Behav. 113, 97–115 (2019)

    Google Scholar 

  28. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24488-9

  29. Korula, N., Pál, M.: Algorithms for secretary problems on graphs and hypergraphs. In: ICALP 2009, pp. 508–520 (2009)

    Google Scholar 

  30. Lawler, E.L.: Matroid intersection algorithms. Math. Program. 9(1), 31–56 (1975)

    Google Scholar 

  31. Lovász, L.: Matroid matching and some applications. J. Comb. Theory Ser. B 28(2), 208–236 (1980)

    Article  MathSciNet  Google Scholar 

  32. Lucier, B.: An economic view of prophet inequalities. ACM SIGecom Exch. 16(1), 24–47 (2017)

    Article  Google Scholar 

  33. MacRury, C., Ma, W., Grammel, N.: On (random-order) online contention resolution schemes for the matching polytope of (bipartite) graphs. In: SODA 2023, pp. 1995–2014 (2023)

    Google Scholar 

  34. Renato Paes Leme and Sam Chiu-wai Wong: Computing walrasian equilibria: fast algorithms and structural properties. Math. Program. 179(1–2), 343–384 (2020)

    MathSciNet  Google Scholar 

  35. Pollner, T., Roghani, M., Saberi, A., Wajc, D.: Improved online contention resolution for matchings and applications to the gig economy. In: EC 2022, pp. 321–322 (2022)

    Google Scholar 

  36. Rubinstein, A.: Beyond matroids: secretary problem and prophet inequality with general constraints. In: STOC 2016, pp. 324–332, July 2016

    Google Scholar 

  37. Samuel-Cahn, E.: Comparisons of threshold stop rule and maximum for independent nonnegative random variables. Ann. Probab. 12(4), 1213–1216 (1983)

    MathSciNet  Google Scholar 

  38. Soto, J.A., Turkieltaub, A., Verdugo, V.: Strong algorithms for the ordinal matroid secretary problem. Math. Oper. Res. 46(2), 642–673 (2021)

    Google Scholar 

Download references

Acknowledgments

This research was partially supported by ANID-Chile through grants Basal CMM FB210005, FONDECYT 1231669 and FONDECYT 1241846. The authors would like to thank Santiago Rebolledo for the helpful suggestions regarding Sect. 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Verdugo .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marinkovic, J., Soto, J.A., Verdugo, V. (2024). Online Combinatorial Assignment in Independence Systems. In: Vygen, J., Byrka, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2024. Lecture Notes in Computer Science, vol 14679. Springer, Cham. https://doi.org/10.1007/978-3-031-59835-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-59835-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-59834-0

  • Online ISBN: 978-3-031-59835-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics