Skip to main content

Air Pollution Prediction Using Long Short-Term Memory Variants

  • Conference paper
  • First Online:
Advances in Intelligent Computing Techniques and Applications (IRICT 2023)

Abstract

Air pollution is an unresolved environmental problem that poses a health threat in many countries. Nearly 90% of the global population is exposed to polluted air that exceeds established air quality guidelines. Jakarta is one of the most polluted cities in Asia and even the world. The Air Quality Index (AQI) is a measurement index that shows the air quality in an area. The worse the air quality, the higher the AQI value. Jakarta has an average AQI value of 110, which is categorized as unhealthy for some groups of people. For this reason, it is necessary to predict air pollution to take the proper steps to protect their health. One of the deep learning approaches that can handle time series cases is the long short-term memory (LSTM). This research aims to accurately predict air pollution based on AQI using LSTM algorithm variants: Vanilla LSTM, Bidirectional LSTM, and Stacked LSTM. The trained model was evaluated using the root mean square error (RMSE) and mean absolute error (MAE) metrics. Based on the experiment results, the Bi-LSTM model with RMSprop optimizer and 0.0001 learning rate could provide the best results with an RMSE value of 16.68 and an MAE of 12.76. As the best model, Bi-LSTM was implemented to predict Jakarta’s AQI in the following week. The results show that AQI in Jakarta would insignificantly increase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wibowo, F.W.: Prediction of air quality in Jakarta during the COVID-19 outbreak using long short-term memory machine learning. In: IOP Conference Series: Earth and Environmental Science, vol. 704, p. 012046 (2021). https://doi.org/10.1088/1755-1315/704/1/012046

  2. Syuhada, G., et al.: Impacts of air pollution on health and cost of illness in Jakarta, Indonesia. Int. J. Environ. Res. Public Health 20(4), 2916 (2023). https://doi.org/10.3390/ijerph20042916

    Article  Google Scholar 

  3. Gupta, N.S., Mohta, Y., Heda, K., Armaan, R., Valarmathi, B., Arulkumaran, G.: Prediction of air quality index using machine learning techniques: a comparative analysis. J. Environ. Public Health 4916267 (2023). https://doi.org/10.1155/2023/4916267

  4. Bekkar, A., Hssina, B., Douzi, S., Douzi, K.: Air-pollution prediction in smart city, deep learning approach. J. Big Data. 8(1), 1–21 (2021). https://doi.org/10.1186/s40537-021-00548-1

    Article  Google Scholar 

  5. Abirami, S., Chitra, P.: Regional air quality forecasting using spatiotemporal deep learning. J. Clean. Prod. 283, 125341 (2021). https://doi.org/10.1016/j.jclepro.2020.125341

    Article  Google Scholar 

  6. Maleki, H., Sorooshian, A., Goudarzi, G., Baboli, Z., Tahmasebi Birgani, Y., Rahmati, M.: Air pollution prediction by using an artificial neural network model. Clean Technol. Environ. Policy 21(6), 1341–1352 (2019). https://doi.org/10.1007/s10098-019-01709-w

    Article  Google Scholar 

  7. Kristiyanti, D.A., Purwaningsih, E., Nurelasari, E., Kaafi, A. Al, Umam, A.H.: Implementation of neural network method for air quality forecasting in Jakarta region. In: Journal of Physics: Conference Series, vol. 1641, p. 012037 (2020). https://doi.org/10.1088/1742-6596/1641/1/012037

  8. Subramaniam, S., et al.: Artificial intelligence technologies for forecasting air pollution and human health: a narrative review. Sustainability. 14(16), 1–36 (2022). https://doi.org/10.3390/su14169951

    Article  Google Scholar 

  9. Ameer, S., et al.: Comparative analysis of machine learning techniques for predicting air quality in smart cities. IEEE Access 7, 128325–128338 (2019). https://doi.org/10.1109/ACCESS.2019.2925082

    Article  Google Scholar 

  10. Rendana, M., Idris, W.M.R., Rahim, S.A.: Changes in air quality during and after large-scale social restriction periods in Jakarta city, Indonesia. Acta Geophysica. 70(5), 2161–2169 (2022). https://doi.org/10.1007/s11600-022-00873-w

    Article  Google Scholar 

  11. Santoso, M., et al.: Long term characteristics of atmospheric particulate matter and compositions in Jakarta, Indonesia. Atmos. Pollut. Res. 11(12), 2215–2225 (2020). https://doi.org/10.1016/j.apr.2020.09.006

    Article  Google Scholar 

  12. Jakob, A., Hasibuan, S., Fiantis, D.: Empirical evidence shows that air quality changes during COVID-19 pandemic lockdown in Jakarta, Indonesia are due to seasonal variation, not restricted movements. Environ. Res. 208, 112391 (2022). https://doi.org/10.1016/j.envres.2021.112391

    Article  Google Scholar 

  13. Handhayani, T., Lewenusa, I., Herwindiati, D.E., Hendryli, J.: A comparison of LSTM and BiLSTM for forecasting the air pollution index and meteorological conditions in Jakarta. In: 5th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), pp. 334–339. IEEE, Yogyakarta (2022). https://doi.org/10.1109/ISRITI56927.2022.10053078

  14. Santoso, M., et al.: Assessment of urban air quality in Indonesia. Aerosol Air Qual. Res. 20(10), 2142–2158 (2020). https://doi.org/10.4209/aaqr.2019.09.0451

    Article  Google Scholar 

  15. Ma, J., Cheng, J.C.P., Lin, C., Tan, Y., Zhang, J.: Improving air quality prediction accuracy at larger temporal resolutions using deep learning and transfer learning techniques. Atmos. Environ. 214, 116885 (2019). https://doi.org/10.1016/j.atmosenv.2019.116885

    Article  Google Scholar 

  16. Lestari, P., Arrohman, M.K., Damayanti, S., Klimont, Z.: Emissions and spatial distribution of air pollutants from anthropogenic sources in Jakarta. Atmos. Pollut, Res. 13(9), 101521 (2022). https://doi.org/10.1016/j.apr.2022.101521

    Article  Google Scholar 

  17. Al-Janabi, S., Mohammad, M., Al-Sultan, A.: A new method for prediction of air pollution based on intelligent computation. Soft. Comput. 24(1), 661–680 (2020). https://doi.org/10.1007/s00500-019-04495-1

    Article  Google Scholar 

  18. Ningrum, A.F., Suharsono, A., Rahayu, S.P.: Comparison vector autoregressive and long short term memory for forecasting air pollution index in Jakarta. In: 6th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), pp. 547–552. IEEE, Yogyakarta (2022). https://doi.org/10.1109/ICITISEE57756.2022.10057741

  19. Hansun, S., Wicaksana, A., Kristanda, M.B.: Prediction of jakarta city air quality index: Modified double exponential smoothing approaches. Int. J. Innov. Comput. Inf. Control 17(4), 1363–1371 (2021). https://doi.org/10.24507/ijicic.17.04.1363

  20. Handhayani, T.: An integrated analysis of air pollution and meteorological conditions in Jakarta. Sci. Rep. 13(1), 1–11 (2023). https://doi.org/10.1038/s41598-023-32817-9

    Article  Google Scholar 

  21. Ma, J., Li, Z., Cheng, J.C.P., Ding, Y., Lin, C., Xu, Z.: Air quality prediction at new stations using spatially transferred bi-directional long short-term memory network. Sci. Total Environ. 705, 135771 (2020). https://doi.org/10.1016/j.scitotenv.2019.135771

    Article  Google Scholar 

  22. Ahammed, M.F., Molla, A.A., Kadir, R., Kadir, M.I.: Deep bidirectional LSTM for the signal detection of universal filtered multicarrier systems. Mach. Learn. Appl. 10, 100425 (2020). https://doi.org/10.1016/j.mlwa.2022.100425

    Article  Google Scholar 

  23. Jaseena, K.U., Kovoor, B.C.: Decomposition-based hybrid wind speed forecasting model using deep bidirectional LSTM networks. Energy Convers. Manag. 234, 113944 (2021). https://doi.org/10.1016/j.enconman.2021.113944

    Article  Google Scholar 

  24. Xayasouk, T., Lee, H.M., Lee, G.: Air pollution prediction using long short-term memory (LSTM) and deep autoencoder (DAE) models. Sustainability. 12(6), 2570 (2020). https://doi.org/10.3390/su12062570

    Article  Google Scholar 

  25. Sebt, M.V., Ghasemi, S.H., Mehrkian, S.S.: Predicting the number of customer transactions using stacked LSTM recurrent neural networks. Soc. Netw. Anal. Min. 11(86), 1–13 (2021). https://doi.org/10.1007/s13278-021-00805-4

    Article  Google Scholar 

  26. AirNow. https://www.airnow.gov/. Accessed 24 Aug 2023

  27. Cho, B., et al.: Effective missing value imputation methods for building monitoring data. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 2866–2875. IEEE, Atlanta (2020). https://doi.org/10.1109/BigData50022.2020.9378230

  28. Saeipourdizaj, P., Sarbakhsh, P., Gholampour, A.: Application of imputation methods for missing values of pm10 and o3 data: interpolation, moving average and k-nearest neighbor methods. Environ. Health Eng. Manag. 8(3), 215–226 (2021). https://doi.org/10.34172/EHEM.2021.25

  29. Lee, L.C., Liong, C.Y., Jemain, A.A.: Validity of the best practice in splitting data for hold-out validation strategy as performed on the ink strokes in the context of forensic science. Microchem. J. 139(2017), 125–133 (2018). https://doi.org/10.1016/j.microc.2018.02.009

    Article  Google Scholar 

  30. Maldonado, S., López, J., Iturriaga, A.: Out-of-time cross-validation strategies for classification in the presence of dataset shift. Appl. Intell. 52(5), 5770–5783 (2022). https://doi.org/10.1007/s10489-021-02735-2

    Article  Google Scholar 

  31. Rahmadeyan, A., Mustakim, Ahmad, I., Alexander, A.D., Rahman, A.: Phishing website detection with ensemble learning approach using artificial neural network and AdaBoost. In: 2023 International Conference on Information Technology Research and Innovation (ICITRI), pp. 162–166. IEEE, Jakarta (2023). https://doi.org/10.1109/ICITRI59340.2023.10249799

  32. Drewil, G.I., Al-Bahadili, R.J.: Air pollution prediction using LSTM deep learning and metaheuristics algorithms. Meas. Sens. 24, 100546 (2022). https://doi.org/10.1016/j.measen.2022.100546

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhas Rahmadeyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rahmadeyan, A., Mustakim, Erkamim, M., Ahmad, I., Sepriano, Aziz, S. (2024). Air Pollution Prediction Using Long Short-Term Memory Variants. In: Saeed, F., Mohammed, F., Fazea, Y. (eds) Advances in Intelligent Computing Techniques and Applications. IRICT 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 211. Springer, Cham. https://doi.org/10.1007/978-3-031-59707-7_11

Download citation

Publish with us

Policies and ethics