Skip to main content

Do Crushing Operations Influence the Results of Accelerated Expansion Laboratory Tests?

  • Conference paper
  • First Online:
Proceedings of the 17th International Conference on Alkali-Aggregate Reaction in Concrete (ICAAR 2024)

Abstract

The most common standards ruling the assessment of the potential reactivity of aggregates consider that the petrographic analysis should be followed, in the first step, by accelerated mortar-bar tests and, in case of a positive result, by concrete-prism tests.

However, experience has shown that these different approaches often provide contradictory results in the classification of an aggregate as innocuous or potentially reactive. Discussion about the inaccuracy of the accelerated mortar-bar test for some slow reactive aggregates has been puzzling the scientific community and some explanations have been suggested to explain this fact.

In the present work, deformed rocks used as aggregates, previously submitted to accelerated mortar-bar tests and to concrete-prism tests, are analyzed regarding different grain sizes. The research aims to define the role of crushing mechanisms in the destruction of crystals originated from sub-graining, due to tectonic deformation, during the production of the smaller particles requested by the mortar-bar test. With this purpose, the petrographic analysis of the rocks selected, and their correspondent sand size aggregates has been done using the image-based open software JMicrovision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stanton, T.E.: Influence of cement and aggregate on concrete expansion. Eng. News-Record (1940)

    Google Scholar 

  2. Diamond, S., Thaulow, N.: A study of expansion due to alkali—silica reaction as conditioned by the grain size of the reactive aggregate. Cem. Concr. Res. 4(4), 591–607 (1974)

    Article  Google Scholar 

  3. Lu, D., Fournier, B., Grattan-Bellew, P.E., Lu, Y., Xu, Z., Tang, M.: Expansion behaviour of Spratt and Pittsburg limestones in different test procedures. In: Broekmans, M.A.T.M., Wigum, B.J. (eds.) 13th International Conference on Alkali-Aggregate Reactions in Concrete, pp. 619–627. Trondheim, Norway (2008)

    Google Scholar 

  4. Zhang, C., Wang, A., Tang, M., Wu, B., Zhang, N.: Influence of aggregate size and aggregate size grading on ASR expansion. Cem. Concr. Res. 29(9), 1393–1396 (1999)

    Article  Google Scholar 

  5. Hobbs, D.W., Gutteridge, W.A.: Particle size of aggregate and its influence upon the expansion caused by the alkali–silica reaction. Mag. Concr. Res. 31(109), 235–242 (1979)

    Article  Google Scholar 

  6. Vivian, H.E.: Studies in cement-aggregate reaction. 19. The effect on mortar expansion of the particle size of the reactive component in the aggregate (1951)

    Google Scholar 

  7. Poyet, S., et al.: Influence of water on alkali-silica reaction: experimental study and numerical simulations. J. Mater. Civ. Eng. 18(4), 588–596 (2006)

    Article  Google Scholar 

  8. Zhu, H., Chen, W., Zhou, W., Byars, E.A.: Expansion behaviour of glass aggregates in different testing for alkali-silica reactivity. Mater. Struct. 42, 485–494 (2009)

    Article  Google Scholar 

  9. Multon, S., Cyr, M., Sellier, A., Diederich, P., Petit, L.: Effects of aggregate size and alkali content on ASR expansion. Cem. Concr. Res. 40(4), 508–516 (2010)

    Article  Google Scholar 

  10. Wigum, B.J., Lindgård, J.: AAR: TESTING, MITIGATION & RECOMMENDATIONS. THE NORWEGIAN APPROACH DURING TWO DECADES OF RESEARCH. In 13th ICAAR—International Conference on Alkali--Aggregate Reactions, Trondheim, 2008, pp. 1299–1309 (2008)

    Google Scholar 

  11. Barisone, G., Restivo, G.: Alkali-silica reactivity of some Italian opal and flints tested using a modified mortar bar test. In: 11th International Conference on Alkali--Aggregate reaction in Concrete, 2000, pp. 239–245 (2000)

    Google Scholar 

  12. Lu, D.-Y., Fournier, B., Grattan-Bellew, P.E.: A comparative study on accelerated test methods for determining alkali-silica reactivity of concrete aggregates. In: 12th International Conference on Alkali-Aggregate Reaction in Concrete, 2004, pp. 377–385 (2004)

    Google Scholar 

  13. Lu, D., Fournier, B., Grattan-Bellew, P.: Effect of aggregate particle size on determining alkali-silica reactivity by accelerated tests. J. ASTM Int. 3(9), 1–11 (2006). https://doi.org/10.1520/JAI100432

    Article  Google Scholar 

  14. Lu, D., Fournier, B., Grattan-Bellew, P.E.: Evaluation of accelerated test methods for determining alkali-silica reactivity of concrete aggregates. Cem. Concr. Compos. 28(6), 546–554 (2006)

    Article  Google Scholar 

  15. Ramyar, K., Topal, A., Andiç, Ö.: Effects of aggregate size and angularity on alkali–silica reaction. Cem. Concr. Res. 35(11), 2165–2169 (2005)

    Article  Google Scholar 

  16. Ichikawa, T.: Alkali–silica reaction, pessimum effects and pozzolanic effect. Cem. Concr. Res. 39(8), 716–726 (2009)

    Article  Google Scholar 

  17. Dunant, C.F., Scrivener, K.L.: Effects of aggregate size on alkali–silica-reaction induced expansion. Cem. Concr. Res. 42(6), 745–751 (2012)

    Article  Google Scholar 

  18. Gao, X.X., Multon, S., Cyr, M., Sellier, A.: Alkali–silica reaction (ASR) expansion: Pessimum effect versus scale effect. Cem. Concr. Res. 44, 25–33 (2013)

    Article  Google Scholar 

  19. Sims, I., Nixon, P.: RILEM recommended test method AAR-1: detection of potential alkali-reactivity of aggregates—petrographic method. Mater. Struct. 36(7), 480–496 (2003)

    Article  Google Scholar 

  20. Ramos, V., et al.: Assessment of the potential reactivity of granitic rocks - petrography and expansion tests. Cem. Concr. Res. 86, 63–77 (2016). https://doi.org/10.1016/j.cemconres.2016.05.001

    Article  Google Scholar 

  21. RILEM AAR-4.1, Detection of potential alkali-reactivity 60oC method for aggregate combinations using concrete prisms, vol. 46 (2014)

    Google Scholar 

  22. Roduit, N.: JMicroVision: un logiciel d’analyse d’images pétrographiques polyvalent, vol. 65. Section des Sciences de la Terre, Université de Genève (2007)

    Google Scholar 

  23. Dias, G., Leterrier, J., Mendes, A., Simões, P.P., Bertrand, J.M.: U–Pb zircon and monazite geochronology of post-collisional Hercynian granitoids from the Central Iberian Zone (Northern Portugal). Lithos 45(1–4), 349–369 (1998)

    Article  Google Scholar 

  24. Dias, D., Noronha, F., Simões, P.P., Almeida, A., Martins, H.C.B., Ferreira, N.: Geocronologia e petrogénese do plutonismo tardi-Varisco (NW de Portugal): sìntese e inferências sobre os processos de acreção e reciclagem crustal na Zona Centro-Ibérica,” Ciências Geológicas-Ensino e Investig. e sua história. Vol. I Geol. Clássica (2010)

    Google Scholar 

  25. Brown, M., Lowe, D.: Recognising Panoramas. In: Proceedings of the 9th International Conference on Computer Vision, 2003, vol. 2, pp. 1218–1225 (2003)

    Google Scholar 

  26. Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant features. Int. J. Comput. Vis.Comput. Vis. 74, 59–73 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Patricia Pérez-Fortes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pérez-Fortes, A.P., Fernandes, I., Ramos, V., Silva, A.S. (2024). Do Crushing Operations Influence the Results of Accelerated Expansion Laboratory Tests?. In: Sanchez, L.F., Trottier, C. (eds) Proceedings of the 17th International Conference on Alkali-Aggregate Reaction in Concrete. ICAAR 2024. RILEM Bookseries, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-031-59419-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-59419-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-59418-2

  • Online ISBN: 978-3-031-59419-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics