Skip to main content

Impact of SCMs on Alkali Concentration in Pore Solution

  • Conference paper
  • First Online:
Proceedings of the 17th International Conference on Alkali-Aggregate Reaction in Concrete (ICAAR 2024)

Abstract

The alkali metal concentration and pH values within the pore solution of a concrete strongly influence the occurrence and the extent of alkali-silica reaction (ASR). At (Na + K) concentrations <300 mmol/L, no significant ASR expansion is observed. The alkali metal and hydroxide concentration can be lowered by using either a low alkali cement or by blending Portland cement with silica-rich supplementary cementitious materials (SCMs) such as silica fume, fly ash, calcined clays or blast-furnace slag.

The reaction of silica-rich SCMs lowers the Ca/Si-ratio in C-A-S-H, which increases the uptake of Na and K by C-A-S-H and lowers both alkali concentrations and pH values in the pore solution, efficiently preventing ASR.

Thermodynamic modelling and the empirical Taylor model were used to predict the changes in the pore solution composition as a function of the amount of the respective SCM added to the concrete. Comparison with literature data confirms that the models can be used to predict the trends in alkali concentrations.

The literature data and thermodynamic modelling indicate that the replacement of Portland cement with ≥ 20 wt.% silica fume or metakaolin, ≥ 50 wt.% silica-rich fly ash or ≥ 65 wt.% blast-furnace slag can suppress ASR expansion in concrete. The study was conducted within the framework of working group 2 of RILEM TC 301 ASR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bagheri, M., Lothenbach, B., Shakoorioskooie, M., Scrivener, K.: Effect of different ions on dissolution rates of silica and feldspars at high pH. Cem. Concr. Res. 152, 106644 (2022)

    Article  Google Scholar 

  2. Lothenbach, B., De Weerdt, K., Hooton, D., Duchesne, J., Leemann, A.: Can we relate ASR expansion to the pore solution composition? ICAAR 2024 Ottawa, Canada (2024)

    Google Scholar 

  3. Shehata, M.H., Thomas, M.D.A.: Use of ternary blends containing silica fume and fly ash to suppress expansion due to alkali–silica reaction in concrete. Cem. Concr. Res. 32, 341–349 (2002)

    Article  Google Scholar 

  4. Vollpracht, A., Lothenbach, B., Snellings, R., Haufe, J.: The pore solution of blended cements: a review. Mater. Struct. 49, 3341–3367 (2016)

    Article  Google Scholar 

  5. Taylor, H.F.W.: A method for predicting alkali ion concentrations in cement pore solutions. Adv. Cem. Res. 1, 5–17 (1987)

    Article  Google Scholar 

  6. Lothenbach, B., Le Saout, G., Gallucci, E., Scrivener, K.: Influence of limestone on the hydration of Portland cements. Cem. Concr. Res. 38, 848–860 (2008)

    Article  Google Scholar 

  7. Kunther, W., Dai, Z., Skibsted, J.: Thermodynamic modeling of hydrated white Portland cement–metakaolin–limestone blends utilizing hydration kinetics from 29Si MAS NMR spectroscopy. Cem. Concr. Res. 86, 29–41 (2016)

    Article  Google Scholar 

  8. Schäfer, E.: Einfluss der Reaktion verschiedener Zementhauptbestandteile auf den Alkalihaushalt der Porenlösung des Zementsteins. Verlag Bau + Technik GmbH, Düsseldorf, Germany (2006)

    Google Scholar 

  9. Kulik, D.A., et al.: GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes. Comput. Geosci. 17, 1–24 (2013)

    Google Scholar 

  10. Lothenbach, B., et al.: Cemdata18: a chemical thermodynamic database for hydrated Portland cements and alkali-activated materials. Cem. Concr. Res. 115, 472–506 (2019)

    Article  Google Scholar 

  11. Miron, G.D., Kulik, D.A., Lothenbach, B.: Porewater compositions of Portland cement with and without silica fume calculated using the fine-tuned CASH+NK solid solution model. Mater. Struct. 55, 212 (2022)

    Article  Google Scholar 

  12. Skibsted, J., Snellings, R.: Reactivity of supplementary cementitious materials (SCMs) in cement blends. Cem. Concr. Res. 124, 105799 (2019)

    Article  Google Scholar 

  13. Hemstad, P., et al.: Alkali metal distribution in composite cement pastes and its relation to accelerated ASR tests. Cem. Concr. Res. 173, 107283 (2023)

    Google Scholar 

Download references

Acknowledgements

The study was conducted within the framework of working group 2 of RILEM TC 301 ASR. We have used the pore solution database from RILEM TC 238-SCM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaartje de Weerdt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Weerdt, K., Lothenbach, B., Krüger, M., Ranger, M., Leemann, A. (2024). Impact of SCMs on Alkali Concentration in Pore Solution. In: Sanchez, L.F., Trottier, C. (eds) Proceedings of the 17th International Conference on Alkali-Aggregate Reaction in Concrete. ICAAR 2024. RILEM Bookseries, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-031-59419-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-59419-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-59418-2

  • Online ISBN: 978-3-031-59419-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics