Skip to main content

Positioning of a Surgical Parallel Robot Using Artificial Intelligence

  • Conference paper
  • First Online:
Advances in Service and Industrial Robotics (RAAD 2024)

Abstract

Virtual reality (VR) can serve as a revolutionary technology in surgery, where robotic systems are used to assist residents in training and accumulating knowledge without risk. In this article, a simulator was developed using virtual reality technology designed for a surgical robotic system used in the single-incision laparoscopic surgery (SILS) procedure. For this system, artificial intelligence is employed for the automatic positioning of the mobile platform of the parallel robot above the SILS port. On the mobile platform, there are two active instruments and a laparoscopic camera, which can be easily inserted through the SILS port by means of two controllers and voice commands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nguyen, T.T., Basilius, J., Ali, S.N., Dobbs, R.W., Lee, D.I.: Single-port robotic applications in urology. J. Endourol. 37(6), 688–699 (2023)

    Article  Google Scholar 

  2. Pisla, D., Plitea, N., Gherman, B., Pisla, A., Vaida, C.: Kinematical analysis and design of a new surgical parallel robot. In: Proceedings of the 5th international workshop on computational kinematics, Duisburg, Germany, pp. 273–282 (2009)

    Google Scholar 

  3. Vaida, C., Pisla, D., Plitea, N., Gherman, B., Gyurka, B., Stancel, E., Hesselbach, J., Raatz, A., Vlad, L., Graur, F.: Development of a control system for a parallel robot used in minimally invasive surgery. IFMBE Proc. 26, 171–176 (2009)

    Article  Google Scholar 

  4. Pisla, D., Birlescu, I., Vaida, C., Tucan, P., Pisla, A., Gherman, B., Crisan, N., Plitea, N.: Algebraic modeling of kinematics and singularities for a prostate biopsy parallel robot. Proc. Rom. Acad. Ser. A 19, 489–497 (2019)

    MathSciNet  Google Scholar 

  5. Furukawa, K., Asaoka, T., Mikamori, M., et al.: Single-incision laparoscopic cholecystectomy: a single-centre experience of 1469 cases. J. Gastrointest. Surg. 26, 831–836 (2022)

    Article  Google Scholar 

  6. Moglia, A., Morelli, L., et al.: Ensemble deep learning for the prediction of proficiency at a virtual simulator for robot-assisted surgery. Surg. Endosc. 36, 6473–6479 (2022)

    Article  Google Scholar 

  7. Covaciu, F., N. Crisan, Vaida, C., Andras, I., Pusca, A., Gherman, B., Radu, C., Tucan, P., Al Hajjar, N., Pisla, D.: Integration of virtual reality in the control system of an innovative medical robot for single-incision laparoscopic surgery. Sensors 23(12) (2023)

    Google Scholar 

  8. Elessawy, M., Mabrouk, M., et al.: Evaluation of laparoscopy virtual reality training on the improvement of trainees’ surgical skills. Medicina 57(2), 130 (2021)

    Article  Google Scholar 

  9. Ohtake, S., Makiyama, K., Yamashita, D., Tatenuma, T., Yao, M.: Training on a virtual reality laparoscopic simulator improves performance of live laparoscopic surgery. Asian J. Endoscop. Surg. 15(2), 313–319 (2022)

    Article  Google Scholar 

  10. Rogers, M.P., DeSantis, A.J., Janjua, H., Barry, T.M., Kuo, P.C.: The future surgical training paradigm: virtual reality and machine learning in surgical education. Surgery 169(5), 1250–1252 (2021)

    Article  Google Scholar 

  11. https://static.makehumancommunity.org/makehuman/docs.html

  12. https://docs.unity3d.com/Manual/index.html

  13. https://docs.ultralytics.com/

  14. https://pytorch.org/docs/stable/index.html

  15. Redmon, J., Divvala, S., et al.: You only look once: unified, real-time object detection. Comput. Vis. Patt. Recogn. (CVPR) 779–788 (2016)

    Google Scholar 

  16. Hussain, M.: YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection. Machines 11(7), 677 (2023)

    Article  Google Scholar 

  17. Soylu, E., Soylu, T.: A performance comparison of YOLOv8 models for traffic sign detection in the Robotaxi-full scale autonomous vehicle competition. Multimedia Tools Appl. 1–31 (2023)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the project New smart and adaptive robotics solutions for personalized minimally invasive surgery in cancer treatment—ATHENA, funded by European Union—NextGenerationEU and Romanian Government, under National Recovery and Resilience Plan for Romania, contract no. 760072/23.05.2023, code CF 116/15.11.2022, through the Romanian Ministry of Research, Innovation and Digitalization, within Component 9, investment I8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Tucan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Covaciu, F., Tucan, P., Rus, G., Pisla, A., Zima, I., Gherman, B. (2024). Positioning of a Surgical Parallel Robot Using Artificial Intelligence. In: Pisla, D., Carbone, G., Condurache, D., Vaida, C. (eds) Advances in Service and Industrial Robotics. RAAD 2024. Mechanisms and Machine Science, vol 157. Springer, Cham. https://doi.org/10.1007/978-3-031-59257-7_9

Download citation

Publish with us

Policies and ethics