Skip to main content

A Literature Review and Design Considerations Towards a Gripper for Tomato Harvesting

  • Conference paper
  • First Online:
Advances in Service and Industrial Robotics (RAAD 2024)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 157))

Included in the following conference series:

  • 55 Accesses

Abstract

The paper reviews current commercial and research solutions in the field of grippers for automated tomato harvesting. The gripping devices are classified according to the method of harvesting tomatoes, namely individual fruits and branches. The requirements that the design of a gripping device for harvesting tomatoes must satisfy are formulated also based on preliminary laboratory tests. The requirements include the mechanical properties of the tomatoes and the required characteristics of the gripping device. A preliminary design concept is also proposed for harvesting tomatoes with a specific focus on the large-size tomato varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kawamura, N., Namikawa, K., Fujiura, T., Ura, M.: Study on agricultural robot (Part 1). J. Japan. Soc. Agric. Mach. 46, 353–358 (1984). (in Japanese)

    Google Scholar 

  2. Kondo, N., Shibano, Y., Mohri, K., Fujiura, T., Monta, M.: Request to cultivation method from tomato harvesting robot. Acta Hortic. 319, 567–572 (1992)

    Article  Google Scholar 

  3. Buemi, F., Massa, M., Sandini, G., Costi, G.: The AGROBOT project. Adv. Space Res. 18(1–2), 185–189 (1996)

    Article  Google Scholar 

  4. Jin, Z.M., Sun, W., Zhang, J., Shen, C., Zhang, H.Y., Han, S.Q.: Intelligent tomato picking robot system based on multimodal depth feature analysis method. In: IOP Conference Series Earth and Environmental Science, vol. 440, p. 042074 (2020)

    Google Scholar 

  5. Miah, I., Sultan, S., Wangchuk, J., Savitha R.: Development of solar power agriculturally based fruit picking robot. ESP J. Eng. Technol. Advancements 3(1) JETA-V3I1P108 (2023)

    Google Scholar 

  6. Kawamura, N., Namikawa, K., Fujiura, T., Ura, M., Ogawa, Y.: Prototype production of the hand part of a fruit harvesting robot. J. Jpn. Soc. Agric. Mach. 49, 116 (1987). (in Japanese)

    Google Scholar 

  7. Su, L., Liu, R., Liu, K., Li, K., Liu, L., Shi, Y.: Greenhouse tomato picking robot chassis. Agriculture 13, 532 (2023)

    Article  Google Scholar 

  8. Zhu, T., Xiang, J.: Chassis design of tomato picking robot in the greenhouse. J. Phys. Conf. Ser. 2136, 012047 (2021)

    Article  Google Scholar 

  9. Zu, L.L., Han, M.Z., Liu, J.Q., Liu, P.Z., Li, T., Su, F.: Design and experiment of nondestructive post-harvest device for tomatoes. Agriculture 12, 1233 (2022)

    Article  Google Scholar 

  10. Ota, T., Iwasaki, Y., Nakano, A., Kuribara, H., Higashide, T.: Development of yield and harvesting time monitoring system for tomato greenhouse production. Eng. Agric. Environ. Food 12(1), 40–47 (2019)

    Article  Google Scholar 

  11. Li, Z., Liu, J., Li, P., Li, W.: Analysis of workspace and kinematics for a tomato harvesting robot. In: Proceedings International Conference on Intelligent Computation Technology and Automation, Changsha, China, pp. 823–827 (2008)

    Google Scholar 

  12. Wu, J.H., Zhang, Y., Zhang, S.H., Wang, H.J., Liu, L., Shi, Y.G.: Simulation design of a tomato picking manipulator. Teh. Vjesn. 28, 1253–1261 (2021)

    Google Scholar 

  13. Ishii, K., Matsuo, T., Takemura, Y., Sonoda, T., Sanada, A., Tominaga, M., Nishida, Y., Yasukawa, S., Shirahashi, K., Fujinaga, T., Arita, D., Kawajiri, K., Ohshima, K., Okada, M.: Report on the 8th tomato-harvesting competition toward smart agriculture. In: Proceedings of International Conference on Artificial Life and Robotics, pp.486–490 (2023)

    Google Scholar 

  14. Ohshige, T., Tominaga, M., Fujinaga, T., Takemura, Y., Ahn, J.: Development of harvesting robot for tomato robot competition 2022 and its evaluation. In: Proceedings of International Conference on Artificial Life and Robotics, pp. 477–480 (2023)

    Google Scholar 

  15. Yaguchi, H., Nagahama, K., Hasegawa, T., Inaba, M.: Development of an autonomous tomato harvesting robot with rotational plucking gripper. In: Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, pp. 652–657, 9–14 October 2016

    Google Scholar 

  16. Guo, T., Zheng, Y., Bo, W., Liu, J., Pi, J., Chen, W., Deng, J.: Research on the bionic flexible end-effector based on tomato harvesting. J. Sens. 2022, Article ID 2564952 (2022)

    Google Scholar 

  17. Elgeneidy, K., Lightbody, P., Pearson, S., Neumann, G.: Characterising 3D-printed soft fin ray robotic fingers with layer jamming capability for delicate grasping. In: 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), Seoul, Korea (South), pp. 143–148 (2019)

    Google Scholar 

  18. Russo, M., Ceccarelli, M., Corves, B., Hüsing, M., Lorenz, M., Cafolla, D., Carbone, G.: Design and test of a gripper prototype for horticulture products. Robot. Comput. Integ. Manuf. 44, 266–275 (2017)

    Article  Google Scholar 

  19. Liu, J., Li, Z., Li, P., Mao, H.: Design of a laser stem-cutting device for harvesting robot. In: Proceedings of the IEEE International Conference on Automation and Logistics Qingdao, China, pp. 2370–2374 September 2008

    Google Scholar 

  20. Stella, F., Della Santina, C., Hughes, J.: How can LLMs transform the robotic design process? Nat. Mach. Intell. 5, 561–564 (2023)

    Article  Google Scholar 

  21. Yeshmukhametov, A., Koganezawa, K., Buribayev, Z., Amirgaliyev, Y., Yamamoto, Y.: Development of continuum robot arm and gripper for harvesting cherry tomatoes. Appl. Sci. 12, 6922 (2022)

    Article  Google Scholar 

  22. Fujinaga, T., Yasukawa, S., Ishii, K.: Development and evaluation of a tomato fruit suction cutting device. In: Proceedings of the 2021 IEEE/SICE International Symposium on System Integration (SII), Fukushima, Japan, pp. 628–633, 11–14 January 2021

    Google Scholar 

  23. Fu, J., Yu, Z., Guo, Q., Zheng, L., Gan, D.: A variable stiffness robotic gripper based on parallel beam with vision-based force sensing for flexible grasping. Robotica, pp. 1–19, Published online 2023. https://doi.org/10.1017/S026357472300156X

  24. Taqi, F., Al-Langawi, F., Abdulraheem, H., El-Abd, M.: A cherry-tomato harvesting robot. In: Proceedings of the 2017 18th International Conference on Advanced Robotics (ICAR), Hong Kong, China, pp. 463–468, 10–12 July 2017

    Google Scholar 

  25. Vu, Q., Ronzhin, A.A.: A model of four-finger gripper with a built-in vacuum suction Nozzle for harvesting tomatoes. In: Smart Innovation, Systems and Technologies, pp. 149–160. Spinger, Berlin/Heidelberg, Germany (2020)

    Google Scholar 

  26. Jun, J., Kim, J., Seol, J., Kim, J., Son, H.: Il towards an efficient tomato harvesting robot: 3D perception, manipulation, and end-effector. IEEE Access 9, 17631–17640 (2021)

    Article  Google Scholar 

  27. Ling, X., Zhao, Y., Gong, L., Liu, C., Wang, T.: Dual-arm cooperation and implementing for robotic harvesting tomato using binocular vision. Rob. Auton. Syst. 114, 134–143 (2019)

    Article  Google Scholar 

  28. Ling, P.P., Ehsani, R., Ting, K.C., Chi, Y-T., Ramalingam, N., Klingman, M.H., Draper, C.: Sensing and end-effector for a robotic tomato harvester. In: 2004 ASAE/CSAE Annual International Meeting, Ottawa, Ontario, Canada. American Society of Agricultural and Biological Engineers, St. Joseph, Michigan (2004)

    Google Scholar 

  29. Kondo, N., Monta, M., Shibano, Y., Mohri, K.: Two finger harvesting hand with absorptive pad based on physical properties of tomato. Environ. Control. Biol. 31(2), 87–92 (1993)

    Article  Google Scholar 

  30. Chiu, Y.C., Yang, P.Y., Chen, S.: Development of the end-effector of a picking robot for greenhouse-grown tomatoes. Appl. Eng. Agric. 29(6), 1001–1009 (2013)

    Google Scholar 

  31. Zhang, F., Chen, Z., Wang, Y., Bao, R., Chen, X., Fu, S., Tian, M., Zhang, Y.: Research on flexible end-effectors with humanoid grasp function for small spherical fruit picking. Agriculture 13, 123 (2023)

    Article  Google Scholar 

  32. Wang, G., Yu, Y., Feng, Q.: Design of end-effector for tomato robotic harvesting. IFAC-PapersOnLine 49(16), 190–193 (2016)

    Article  Google Scholar 

  33. Rong, J., Wang, P., Wang, T., Hu, L., Yuan, T.: Fruit pose recognition and directional orderly grasping strategies for tomato harvesting robots. Comput. Electron. Agric. 202, 107430 (2022)

    Article  Google Scholar 

  34. Feng, Q., Zou, W., Fan, P., Zhang, C., Wang, X.: Design and test of robotic harvesting system for cherry tomato. Int. J. Agric. Biol. Eng. 11, 96–100 (2018)

    Google Scholar 

  35. Kondo, N., Yata, K., Iida, M., Shiigi, T., Monta, M., Kurita, M., Omori, H.: Development of an end-effector for a tomato cluster harvesting robot. Eng. Agric. Env. Food. 3, 20–24 (2010)

    Google Scholar 

  36. Gladyszewska, B., Ciupak, A.: Changes in the mechanical properties of the greenhouse tomato fruit skins during storage. Tech. Sci. 12(12), 1–8 (2009)

    Google Scholar 

  37. Williams, S.H., Wright, B.W., Truong, V.D., Daubert, C.R., Vinyard, C.J.: Mechanical properties of foods used in experimental studies of primate masticatory function. Am. J. Primatol. 67(3), 329–346 (2005)

    Article  Google Scholar 

  38. Babarinsa, F.A., Ige, M.T.: Young’s modulus for packaged Roma tomatoes under compressive loading. Int. J. Sci. Eng. Res. 3(10), 314–320 (2014)

    Google Scholar 

  39. Jimenez, C.E.: Diseno de un organo aprenhensor para la recollecciòn de productos ortofruticolas”, Master Thesis. University of Malaga, ETSII (1998)

    Google Scholar 

  40. Carbone, G. (eds): Grasping in Robotics. Mechanisms and Machine Science, vol 10. Springer, London. https://doi.org/10.1007/978-1-4471-4664-3_1

  41. Samuel, D.V.K.: Manually operated tomato harvesting tool for greenhouse. Acta Hortic. 710, 491–496 (2006)

    Article  Google Scholar 

  42. Navas, E., Fernández, R., Sepúlveda, D., Armada, M., Gonzalez-de-Santos, P.: Soft grippers for automatic crop harvesting: a review. Sensors 21, 2689 (2021)

    Article  Google Scholar 

  43. Carbone, G., Rossi, C., Savino, S.: Performance comparison between FEDERICA hand and LARM hand. Int.J. Adv. Rob. Syst. 12(7). 2015. https://doi.org/10.5772/60523

  44. Rodinò, S., Lago, F., Malyshev, D., Carbone, G.: Design of a movable palm for a 3-fingers robotic hand. Int. J. Mech. Control 24(1), 177–188 (2023)

    Google Scholar 

Download references

Acknowledgements

This paper has been funded by the PNRR Next Generation EU TECH4YOU–ECS 00000009, CUP H23C22000370006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Malyshev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Malyshev, D. et al. (2024). A Literature Review and Design Considerations Towards a Gripper for Tomato Harvesting. In: Pisla, D., Carbone, G., Condurache, D., Vaida, C. (eds) Advances in Service and Industrial Robotics. RAAD 2024. Mechanisms and Machine Science, vol 157. Springer, Cham. https://doi.org/10.1007/978-3-031-59257-7_55

Download citation

Publish with us

Policies and ethics