Skip to main content

Backward Inference in Probabilistic Regressor Chains with Distributional Constraints

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis XXII (IDA 2024)

Abstract

State-of-the-art approaches for multi-target prediction, such as Regressor Chains, can exploit interdependencies among the targets and model the outputs jointly, by flowing predictions from the first output to the last. While these models are very useful in applications where targets are highly interdependent and should be modeled jointly, they are however unable to answer queries in situations when targets are not only mutually dependent but also have joint constraints over the output. In addition, existing models are unsuitable when certain target values are fixed or manually imputed prior to inference, and as a result, the flow of predictions cannot cascade backward from an already-imputed output. Here we present a solution to the aforementioned problem as a backward inference algorithm for Regressor Chains via Metropolis-Hastings sampling. We evaluate the proposed approach via different metrics using both synthetic and real-world data. We show that our approach notably reduces errors when compared to traditional marginal inference methods that overlook joint modeling. Furthermore, we show that the proposed method can provide useful insights into a problem in conservation science in predicting the distribution of potential natural vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aitchison, J.: A concise guide to compositional data analysis. In: Compositional Data Analysis Workshop (2005)

    Google Scholar 

  2. Antonenko, E., Read, J.: Multi-modal ensembles of regressor chains for multi-output prediction. In: Bouadi, T., Fromont, E., Hüllermeier, E. (eds.) IDA 2022. LNCS, vol. 13205, pp. 1–13. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-01333-1_1

    Chapter  Google Scholar 

  3. Beigaitė, R., Read, J., Žliobaitė, I.: Multi-output regression with structurally incomplete target labels: a case study of modelling global vegetation cover. Eco. Inform. 72, 101849 (2022)

    Article  Google Scholar 

  4. Chiarucci, A., Araújo, M.B., Decocq, G., Beierkuhnlein, C., Fernández-Palacios, J.M.: The concept of potential natural vegetation: an epitaph? J. Veg. Sci. 21(6), 1172–1178 (2010)

    Article  Google Scholar 

  5. Fick, S.E., Hijmans, R.J.: WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017)

    Article  Google Scholar 

  6. Friedl, M., Sulla-Menashe, D.: MCD12Q1 MODIS/Terra+Aqua land cover type yearly L3 global 500m SIN grid v006, NASA EOSDIS Land Processes DAAC (2019)

    Google Scholar 

  7. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. arXiv (1506.02142) (2015)

    Google Scholar 

  8. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)

    Article  MathSciNet  Google Scholar 

  9. Hemsing, L., Bryn, A.: Three methods for modelling potential natural vegetation (PNV) compared. Nor. Geogr. Tidsskr. 66(1), 11–29 (2012)

    Article  Google Scholar 

  10. Hengl, T., Walsh, M.G., Sanderman, J., Wheeler, I., Harrison, S.P., Prentice, I.C.: Global mapping of potential natural vegetation: an assessment of machine learning algorithms for estimating land potential. PeerJ 6, e5457 (2018)

    Article  Google Scholar 

  11. Kocev, D., Vens, C., Struyf, J., Džeroski, S.: Tree ensembles for predicting structured outputs. Pattern Recogn. 46(3), 817–833 (2013)

    Article  Google Scholar 

  12. Mechenich, M.F., Žliobaitė, I.: Eco-ISEA3H, a machine learning ready spatial database for ecometric and species distribution modeling. Sci. Data 10, 77 (2023)

    Article  Google Scholar 

  13. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    Article  Google Scholar 

  14. Read, J., Martino, L.: Probabilistic regressor chains with Monte-Carlo methods. Neurocomputing 413, 471–486 (2020)

    Article  Google Scholar 

  15. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains: a review and perspectives. J. Artif. Intell. Res. (JAIR) 70, 683–718 (2021)

    Article  MathSciNet  Google Scholar 

  16. Salmerón, A., Rumí, R., Langseth, H., Nielsen, T., Madsen, A.: A review of inference algorithms for hybrid Bayesian networks. J. Artif. Intell. Res. 62, 799–828 (2018)

    Article  MathSciNet  Google Scholar 

  17. Santana, E., Mastelini, S., Barbon, S.: Deep regressor stacking for air ticket prices prediction. In: Anais do XIII Simpósio Brasileiro de Sistemas de Informação, pp. 25–31. SBC (2017)

    Google Scholar 

  18. Spyromitros-Xioufis, E., Tsoumakas, G., Groves, W., Vlahavas, I.: Multi-target regression via input space expansion: treating targets as inputs. Mach. Learn. 104(1), 55–98 (2016)

    Article  MathSciNet  Google Scholar 

  19. Tsanas, A., Xifara, A.: Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy Build. 49, 560–567 (2012)

    Article  Google Scholar 

  20. Yeh, I.C.: Modeling slump flow of concrete using second-order regressions and artificial neural networks. Cement Concr. Compos. 29(6), 474–480 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

Research leading to these results was supported by Research Council of Finland (grants no 314803 and 341623 to IŽ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Antonenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Antonenko, E., Mechenich, M., Beigaitė, R., Žliobaitė, I., Read, J. (2024). Backward Inference in Probabilistic Regressor Chains with Distributional Constraints. In: Miliou, I., Piatkowski, N., Papapetrou, P. (eds) Advances in Intelligent Data Analysis XXII. IDA 2024. Lecture Notes in Computer Science, vol 14642. Springer, Cham. https://doi.org/10.1007/978-3-031-58553-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58553-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58555-5

  • Online ISBN: 978-3-031-58553-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics