Skip to main content

Efficient Lookahead Decision Trees

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis XXII (IDA 2024)

Abstract

Conventionally, decision trees are learned using a greedy approach, beginning at the root and moving toward the leaves. At each internal node, the feature that yields the best data split is chosen based on a metric like information gain. This process can be regarded as evaluating the quality of the best depth-one subtree. To address the shortsightedness of this method, one can generalize it to greater depths. Lookahead trees have demonstrated strong performance in situations with high feature interaction or low signal-to-noise ratios. They constitute a good trade-off between optimal decision trees and purely greedy decision trees. Currently, there are no readily available tools for constructing these lookahead trees, and their computational cost can be significantly higher than that of purely greedy ones. In this study, we introduce an efficient implementation of lookahead decision trees, specifically LGDT, by adapting a recently introduced algorithmic concept from the MurTree approach to find optimal decision trees of depth two. Additionally, we utilize an efficient reversible sparse bitset data structure to store the filtered examples while expanding the tree nodes in a depth-first-search manner. Experiments on state-of-the-art datasets demonstrate that our implementation offers remarkable computation-time performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All the formula of this section can easily be adapted for multi-class contexts.

  2. 2.

    https://github.com/aia-uclouvain/pydl8.5.

  3. 3.

    https://scikit-learn.org/.

  4. 4.

    https://dtai.cs.kuleuven.be/CP4IM/datasets/.

References

  1. Aghaei, S., GĆ³mez, A., Vayanos, P.: Strong optimal classification trees. ArXiv Preprint ArXiv:2103.15965 (2021)

  2. Aglin, G., Nijssen, S., Schaus, P.: Learning optimal decision trees using caching branch-and-bound search. Proc. AAAI. 34, 3146ā€“3153 (2020)

    ArticleĀ  Google ScholarĀ 

  3. Bertsimas, D., Dunn, J.: Optimal classification trees. Mach. Learn. 106, 1039ā€“1082 (2017)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  4. Boutilier, J., Michini, C., Zhou, Z.: Shattering inequalities for learning optimal decision trees. In: International Conference on Integration of Constraint Programming, Artificial Intelligence, and Operations Research, pp. 74ā€“90 (2022)

    Google ScholarĀ 

  5. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and regression trees. Wadsworth Int. Group. 37, 237ā€“251 (1984)

    Google ScholarĀ 

  6. Burdick, D., Calimlim, M., Gehrke, J.: MAFIA: a maximal frequent itemset algorithm for transactional databases. In: Proceedings 17th International Conference On Data Engineering, pp. 443ā€“452 (2001)

    Google ScholarĀ 

  7. Demeulenaere, J., et al.: Compact-table: efficiently filtering table constraints with reversible sparse bit-sets. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 207ā€“223. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1_14

    ChapterĀ  Google ScholarĀ 

  8. Demirović, E., et al.: MurTree: optimal decision trees via dynamic programming and search. J. Mach. Learn. Res. 23, 1ā€“47 (2022)

    MathSciNetĀ  Google ScholarĀ 

  9. Dolan, E., MorĆ©, J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201ā€“213 (2002)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  10. Donick, D., Lera, S.: Uncovering feature interdependencies in high-noise environments with stepwise lookahead decision forests. Sci. Rep. 11, 9238 (2021)

    ArticleĀ  Google ScholarĀ 

  11. Esmeir, S., Markovitch, S.: Lookahead-based algorithms for anytime induction of decision trees. In: Proceedings Of The Twenty-first International Conference On Machine Learning, p. 33 (2004)

    Google ScholarĀ 

  12. Holsheimer, M., Kersten, M., Mannila, H., Toivonen, H.: A perspective on databases and data mining. In: KDD, vol. 95, pp. 150ā€“155 (1995)

    Google ScholarĀ 

  13. Iba, W., Langley, P.: Induction of one-level decision trees. Mach. Learn. Proc. 1992, 233ā€“240 (1992)

    Google ScholarĀ 

  14. Lin, J., Zhong, C., Hu, D., Rudin, C., Seltzer, M.: Generalized and scalable optimal sparse decision trees. In: ICML, pp. 6150ā€“6160 (2020)

    Google ScholarĀ 

  15. Narodytska, N., Ignatiev, A., Pereira, F., Marques-Silva, J., Ras, I.: Learning optimal decision trees with SAT. In: IJCAI, pp. 1362ā€“1368 (2018)

    Google ScholarĀ 

  16. Nijssen, S., Fromont, E.: Mining optimal decision trees from itemset lattices. In: KDD, pp. 530ā€“539 (2007)

    Google ScholarĀ 

  17. Norton, S.: Generating better decision trees. In: IJCAI, vol. 89, pp. 800ā€“805 (1989)

    Google ScholarĀ 

  18. Quinlan, J.: C4.5: Programs for Machine Learning. Elsevier (2014)

    Google ScholarĀ 

  19. Ragavan, H., Rendell, L.: Lookahead feature construction for learning hard concepts. In: ICML (1993)

    Google ScholarĀ 

  20. Verhaeghe, H., Nijssen, S., Pesant, G., Quimper, C., Schaus, P.: Learning optimal decision trees using constraint programming. Constraints 25, 226ā€“250 (2020)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  21. Verwer, S., Zhang, Y.: Learning optimal classification trees using a binary linear program formulation. Proc. AAAI. 33, 1625ā€“1632 (2019)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold Kiossou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kiossou, H., Schaus, P., Nijssen, S., Aglin, G. (2024). Efficient Lookahead Decision Trees. In: Miliou, I., Piatkowski, N., Papapetrou, P. (eds) Advances in Intelligent Data Analysis XXII. IDA 2024. Lecture Notes in Computer Science, vol 14642. Springer, Cham. https://doi.org/10.1007/978-3-031-58553-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58553-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58555-5

  • Online ISBN: 978-3-031-58553-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics