Skip to main content

Prokaryotes and Eukaryotes

  • Chapter
  • First Online:
Codes and Evolution

Part of the book series: Biosemiotics ((BSEM,volume 29))

  • 71 Accesses

Abstract

The ancient philosophers discussed many theories about the world, such as the existence of atoms, chaos and determinism, evolution and relativity, and yet none of them conceived the cell theory, the idea that all living creatures are made of cells. This great generalisation was made possible by the invention of the microscope, but did not appear suddenly. It was the result of a research that lasted more than 200 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adl SM, Simpson ABG, Farmer MA, Andersen RA, Anderson OR, Barta JR et al (2005) The new higher-level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451

    Article  PubMed  Google Scholar 

  • Baldauf SL (2003) The deep roots of eukaryotes. Science 300:1703–1706

    Article  CAS  PubMed  Google Scholar 

  • Barbieri M (2016) From the common ancestor to the first cells: the code theory. Biol Theory 11:102–112

    Article  Google Scholar 

  • Barbieri M (2017) How did the eukaryotes evolve? Biol Theory 12:13–26

    Article  Google Scholar 

  • Barghoorn ES, Tyler SM (1965) Microfossils from the Gunflint Chert. Science 147:563–577

    Article  CAS  PubMed  Google Scholar 

  • Brown JR, Doolittle WF (1997) Archaea and the prokaryote-eukaryote transition. Microbiol Rev 61:456–502

    CAS  Google Scholar 

  • Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:2124–2129

    Article  CAS  PubMed  Google Scholar 

  • Doolittle WF, Bapteste E (2007) Pattern pluralism and the tree of life hypothesis. Proc Natl Acad Sci USA 104:2043–2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haeckel E (1866) Generalle Morphologie der Organismen. Georg Reimer, Berlin

    Book  Google Scholar 

  • Harold FM (2014) In search of cell history. The evolution of life’s building blocks. The University of Chicago Press, Chicago/London

    Book  Google Scholar 

  • Jun S-R, Sims GE, Wu GA, Kim SH (2010) Whole genome phylogeny of prokaryotes by feature frequency profiles: an alignment-free method with optimal resolution. Proc Natl Acad Sci USA 107:133–138

    Article  CAS  PubMed  Google Scholar 

  • Keeling PJ, Burger G, Durnford DG, Lang BF, Lee RW et al (2005) The tree of the eukaryotes. Trends Ecol Evol 20:670–676

    Article  PubMed  Google Scholar 

  • Knoll AH (2003) Life on a young planet. The first three billion years of evolution on earth. Princeton University Press, Princeton

    Google Scholar 

  • Koonin EV (2003) Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol 1:127–136

    Article  CAS  PubMed  Google Scholar 

  • Koonin EV (2012) The logic of chance. The nature and origin of biological evolution. Pearson Education, Upper Saddle River

    Google Scholar 

  • Kurland CG, Collins LJ, Penny D (2006) Genomics and the irreducible nature of eukaryotic cells. Science 312:1011–1014

    Article  CAS  PubMed  Google Scholar 

  • Lane N (2011) Energetics and genetics across the prokaryote-eukaryote divide. Biol Direct 6:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Lane N (2015) The vital question. Energy, evolution and the origins of complex life. WW Norton Company, New York

    Google Scholar 

  • Lane N, Martin W (2010) The energetic of genome complexity. Nature 467:929–934

    Article  CAS  PubMed  Google Scholar 

  • Lòpez-Garcia P, Moreira D (1999) Metabolic symbiosis at the origin of eukaryotes. Trends Biochem Sci 24:88–93

    Article  PubMed  Google Scholar 

  • Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven

    Google Scholar 

  • Martin W, Müller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 342:37–41

    Article  Google Scholar 

  • Mereschowsky C (1910) Theorie der Zwei Pflanzenarten als Grundlage der Symbiogenesis, einer neuen Lehre der Entstehung der Organismen. Biologisches Zentralblatt 30:278–303, 321–347, 353–367

    Google Scholar 

  • Miller RV (1998) Bacterial gene-swapping in nature. Sci Am 278(1):67–71

    Article  CAS  Google Scholar 

  • Portier P (1918) Les Symbiotes. Masson et Cie, Paris

    Google Scholar 

  • Schimper AFW (1883) Uber die Entwickelung der Chlorophyllkörner und Farbkorper. Bot Ztg 41:105–114

    Google Scholar 

  • Schopf JW (1999) Cradle of life. The discovery of Earth’s earliest fossils. Princeton University Press, Princeton

    Book  Google Scholar 

  • Simonson AB, Servin JA, Skophammer RG, Herbold CW, Rivera MC, Lake JA (2005) Decoding the genomic tree of life. Proc Natl Acad Sci USA 102:6608–6613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snel B, Huynen MA, Dulith BA (2005) Genome trees and the nature of genome evolution. Ann Rev Microbiol 59:191–209

    Article  CAS  Google Scholar 

  • Wallin JE (1927) Symbionticism and the origin of species. Williams and Wilkins, Baltimore

    Book  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR (2000) Interpreting the universal phylogenetic tree. Proc Natl Acad Sci USA 97:8392–8396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains archaea, bacteria and eucarya. Proc Natl Acad Sci USA 87:4576–4579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang D, Oyaizu Y, Olsen GJ, Woese CR (1985) Mitochondrial origins. Proc Natl Acad Sci USA 82:443–447

    Article  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Molecules as documents of evolutionary history. J Theor Biol 8:357–366

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barbieri, M. (2024). Prokaryotes and Eukaryotes. In: Codes and Evolution. Biosemiotics, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-031-58484-8_8

Download citation

Publish with us

Policies and ethics