Skip to main content

From Plaintext-Extractability to IND-CCA Security

  • Conference paper
  • First Online:
Selected Areas in Cryptography (SAC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13742))

Included in the following conference series:

  • 14 Accesses

Abstract

We say a public-key encryption is plaintext-extractable in the random oracle model if there exists an algorithm that given access to the input/output of all queries to the random oracles can simulate the decryption oracle. We argue that the plaintext-extractability is enough to show the indistinguishably under chosen ciphertext attack (IND-CCA) of OAEP+ transform (Shoup, Crypto 2001) when the underlying trapdoor permutation is one-way.

We extend the result to the quantum random oracle model (QROM) and show that OAEP+ is IND-CCA secure in QROM if the underlying trapdoor permutation is quantum one-way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Recently, the classical plaintext-awareness notions PA0, PA1 and PA2 are adopted to the post-quantum setting, however, in the standard model [10].

  2. 2.

    Outputting the smallest (rm) is a convention to have a correct definition of the projector. Since a random oracle is quantum collision-resistance [17], only with a negligible probability there will be more than one pair satisfying the relation (2).

References

  1. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055718

    Chapter  Google Scholar 

  2. Bellare, M., Palacio, A.: Towards plaintext-aware public-key encryption without random oracles. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 48–62. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2_4

    Chapter  Google Scholar 

  3. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) Proceedings of the 1st ACM Conference on Computer and Communications Security, CCS 1993, Fairfax, Virginia, USA, 3–5 November 1993, pp. 62–73. ACM (1993)

    Google Scholar 

  4. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0053428

    Chapter  Google Scholar 

  5. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_21

    Chapter  Google Scholar 

  6. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_3

    Chapter  Google Scholar 

  7. Chevalier, C., Ebrahimi, E., Vu, Q.H.: On security notions for encryption in a quantum world. In: Isobe, T., Sarkar, S. (eds.) INDOCRYPT 2022. LNCS, vol. 13774, pp. 593–613. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22912-1_26

    Chapter  Google Scholar 

  8. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Online-extractability in the quantum random-oracle model. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. LNCS, vol. 13277, pp. 677–706. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07082-2_24

    Chapter  Google Scholar 

  9. Ebrahimi, E.: Post-quantum security of plain OAEP transform. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022. LNCS, vol. 13177, pp. 34–51. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97121-2_2

    Chapter  Google Scholar 

  10. Ebrahimi, E., van Wier, J.: Post-quantum plaintext-awareness. In: Cheon, J.H., Johansson, T. (eds.) PQCrypto 2022. LNCS, vol. 13512, pp. 260–285. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17234-2_13

    Chapter  Google Scholar 

  11. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under the RSA assumption. J. Cryptol. 17(2), 81–104 (2004)

    Article  MathSciNet  Google Scholar 

  12. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th Anniversary edn. Cambridge University Press (2016)

    Google Scholar 

  13. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  Google Scholar 

  14. Shoup, V.: OAEP reconsidered. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 239–259. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_15

    Chapter  Google Scholar 

  15. Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto and OAEP transforms. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 192–216. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_8

    Chapter  Google Scholar 

  16. Winter, A.J.: Coding theorem and strong converse for quantum channels. IEEE Trans. Inf. Theory 45(7), 2481–2485 (1999)

    Article  MathSciNet  Google Scholar 

  17. Zhandry, M.: A note on the quantum collision and set equality problems. Quantum Inf. Comput. 15(7 &8), 557–567 (2015)

    MathSciNet  Google Scholar 

  18. Zhandry, M.: How to record quantum queries, and applications to quantum indifferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 239–268. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_9

    Chapter  Google Scholar 

Download references

Acknowledgment

We would like to thank anonymous reviewers for their useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Ebrahimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ebrahimi, E. (2024). From Plaintext-Extractability to IND-CCA Security. In: Smith, B., Wu, H. (eds) Selected Areas in Cryptography. SAC 2022. Lecture Notes in Computer Science, vol 13742. Springer, Cham. https://doi.org/10.1007/978-3-031-58411-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58411-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58410-7

  • Online ISBN: 978-3-031-58411-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics