Skip to main content

Process Improvement of Taping for an Assembly Electrical Wiring Harness

  • Conference paper
  • First Online:
Industrial Engineering and Applications – Europe (ICIEA-EU 2024)

Abstract

The production of automotive wire harnesses now requires a significant amount of manual labor. Even so, a greater level of automation is required due to present and future application demands such as the miniaturization of electronic components, the monitoring of process parameters, the growing need for paperwork for processes, and the rise in payments. Technology helps manufacturing organizations in the most important aspects of the design-to-manufacturing process. This is relevant to the wire harness sector, which is a crucial part of industrial automotive manufacturing. The automotive wiring harness suppliers designed Computer-Aided Design technologies (CAD) to support wire harness assembly operations and design work. Even with the application of these techniques, engineers will still have to do trial-and-error work to find effective assembly techniques. This study presents a new approach to optimize the wire harness assembly procedures without focusing on trial and error or the experience of experienced engineers to develop operational assembly processes. The most crucial and challenging step in the assembly process sequence is taping routed cables. The taping process’s complexity is mostly determined by how the jig is set up on the workstation and the tape method. As a result, the suggested technique models and optimizes the tape direction and jig arrangement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fisher, M.L., Ittner, C.D.: The Impact of Product Variety on Automobile Assembly Operations: Analysis and Evidence. Wharton School, Philadelphia (1996)

    Google Scholar 

  2. Trommnau, J., Kühnle, J., Siegert, J., Inderka, R., Bauernhansl, T.: Overview of the state of the art in the production process of automotive wire harnesses, current research and future trends. Procedia CIRP 81, 387–392 (2019)

    Article  Google Scholar 

  3. Hardung, B., Kölzow, T., Krüger, A.: Reuse of software in distributed embedded automotive systems. In: Proceedings of the 4th ACM International Conference on Embedded Software, pp. 203–210, Pisa, Italy, 27–29 September 2004

    Google Scholar 

  4. Rivero, A.A.L.: From complex mechanical system to complex electronic system: the case of automobiles. Int. J. Automot. Technol. Manag. 14(1), 65–81 (2014)

    Google Scholar 

  5. Frigant, V., Miollan, S.: The geographical restructuring of the European automobile industry in the 2000s (2014)

    Google Scholar 

  6. Dijk, M., Kemp, R.: A framework for understanding product market innovation paths–emergence of hybrid vehicles as an example. Int. J. Automot. Technol. Manag. 10(1), 56–76 (2010)

    Article  Google Scholar 

  7. Oliver, J.D., Rosen, D.E.: Applying the environmental propensity framework: a segmented approach to hybrid electric vehicle marketing strategies. J. Mark. Theory Pract. 18, 377–393 (2010)

    Article  Google Scholar 

  8. Tran, D.-D., et al.: Thorough state-of-the-art analysis of electric and hybrid vehicle powertrains: topologies and integrated energy management strategies. Renew. Sustain. Energy Rev. 119, 109596 (2020)

    Google Scholar 

  9. Loos, F., Ließ, H.D., Dvorsky, K.: Simulation methods for heat transfer processes in mechanical and electrical connections. In: 2011 1st International Electric Drives Production Conference, pp. 214–220. IEEE, September 2011

    Google Scholar 

  10. Rius Rueda, A.: A Novel Optimization Methodology of Modular Wiring Harnesses in Modern Vehicles: Weight Reduction and Safe Operation. Universitat Politècnica de Catalunya, Barcelona, Spain (2017)

    Google Scholar 

  11. Koch, S., Antrekowitsch, H.: Aluminum alloys for wire harnesses in automotive engineering. BHM Berg-und Hüttenmännische Monatshefte 152, 62–67 (2007)

    Article  Google Scholar 

  12. Yamano, Y., et al.: Development of aluminum wiring harness. SEI Tech. Rev. 73, 73–80 (2011)

    Google Scholar 

  13. Fernandes, M.M., de Almeida, I.A., Junior, H.M.: Automotive miniaturization trend: challenges for wiring harness manufacturing. No. 2010-36-0160. SAE Technical Paper, 2010

    Google Scholar 

  14. Reif, K.: Bosch Autoelektrik und Autoelektronik: Bordnetze, Sensoren und elektronische Systeme; mit 43 Tab. 6th edn. Wiesbaden: Vieweg+Teubner Verlag/Springer Fachmedien Wiesbaden GmbH Wiesbaden (2011). https://doi.org/10.1007/978-3-8348-9902-6

  15. Benbrahim, H., Hachimi, H., Amine, A.: Deep transfer learning pipelines with apache spark and keras TensorFlow combined with logistic regression to detect COVID-19 in chest CT images. Walailak J. Sci. Technol. (WJST) 18(11), Article 13109, 14 (2021)

    Google Scholar 

  16. Jebbor, I., Benmamoun, Z., Hachimi, H., Raouf, Y., Haqqi, M., Akikiz, M.: Improvement of an assembly line in the automotive industry: a case study in wiring harness assembly line. In: Tang, L.C. (ed.) Advances in Transdisciplinary Engineering, pp. 62–71. IOS Press, Amsterdam, The Netherlands (2023)

    Google Scholar 

  17. Jebbor, I., Benmamoun, Z., Hachimi, H.: Optimizing manufacturing cycles to improve production: application in the traditional shipyard industry. Processes 11, 3136 (2023). https://doi.org/10.3390/pr11113136

    Article  Google Scholar 

  18. CATIA. http://www.3ds.com/. Dassault Systèmes

  19. O’B Holt, P., et al.: Immersive virtual reality in cable and pipe routing: design metaphors and cognitive ergonomics. ASME J. Comput. Inf. Sci. Eng. 4(3), 161–170 (2004). https://doi.org/10.1115/1.1759696

  20. Sekine, T., Ito, T., Usuki, S., Miura, K.T.: Electric property analysis and wire placement optimization of automotive wire harness. In: 2021 IEEE International Joint EMC/SI/PI and EMC Europe Symposium, Raleigh, NC, USA, p. 189 (2021). https://doi.org/10.1109/EMC/SI/PI/EMCEurope52599.2021.9559207

  21. Ruan, J., Zhou, X.: Research on CAD/CAPP integrated system for automobile wiring harness. In: 2011 Second International Conference on Mechanic Automation and Control Engineering, Inner Mongolia, China, pp. 5146–5149 (2011). https://doi.org/10.1109/MACE.2011.5988240

  22. Kim, J.H., Lee, J.C., Park, J., Lim, H.: Electronic control unit modeling for automotive wire harness simulation using the Capital Harness system. Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. 225(3), 294–304 (2011). https://doi.org/10.1177/2041299110393215

    Article  Google Scholar 

  23. Ritchie, J.M., Robinson, G., Day, P.N., et al.: Cable harness design, assembly, and installation planning using immersive virtual reality. Virtual Real. 11, 261–273 (2007). https://doi.org/10.1007/s10055-007-0073-7

    Article  Google Scholar 

  24. Yang, X., Liu, J., Lv, N., Xia, H.: A review of cable layout design and assembly simulation in virtual environments. Virtual Real. Intell. Hardw. 1(6), 543–557 (2019). https://doi.org/10.1016/j.vrih.2019.11.001

    Article  Google Scholar 

  25. Isohata, E., Takahashi, K., Ino, H.: 3D–2D interface CAD system for wiring harness. Fujikura Tech. Rev. 101(2001), 61–65 (2001)

    Google Scholar 

  26. Čapek, R., Šůcha, P., Hanzálek, Z.: Scheduling of production with alternative process plans. In: Schwindt, C., Zimmermann, J. (eds.) Handbook on Project Management and Scheduling, vol. 2, pp. 1187–1204. LNCS. International Handbooks on Information Systems. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-05915-0_23.

  27. Nguyen, H.G., Kuhn, M., Franke, J.: Manufacturing automation for automotive wiring harnesses. Procedia CIRP 97, 379–384 (2021). https://doi.org/10.1016/j.procir.2020.05.254

    Article  Google Scholar 

  28. Benmamoun, Z., Fethallah, W., Ahlaqqach, M., Jebbor, I., Benmamoun, M., Elkhechafi, M.: Butterfly algorithm for sustainable lot size optimization. Sustainability 15, 11761 (2023). https://doi.org/10.3390/su151511761

    Article  Google Scholar 

  29. El Khalfi, A., Mahdou, N., Zahir, Y.: Strongly primary ideals in rings with zero divisors. Quaestiones Mathematicae, 44(5), 569580 (2021). https://doi.org/10.2989/16073606. 2020. 1728416

  30. Khalfi, A.E., Mahdou, N., Zahir, Y., Rings in which every nonzero weakly prime ideal is prime. São Paulo J. Math. Sci. 14, 689–697 (2020). https://doi.org/10.1007/s40863-020-00172-6

  31. Gorostiza, C.Z., Hendrickson, C., Rehak, D.R.: Knowledge-Based Process Planning for Construction and Manufacturing. Elsevier, Amsterdam (1989)

    Google Scholar 

  32. Azeroual, M., et al.: Advanced energy management and frequency control of distributed microgrid using multi-agent systems. Int. J. Emerg. Electr. Power Syst. 23(5), 755–766 (2022). https://doi.org/10.1515/ijeeps-2021-0298

  33. Benmamoun, Z., Hachimi, H., Amine, A.: Comparison of inventory models for optimal working capital; case of aeronautics company. Int. J. Eng. 31(4), 605–611 (2018)

    Google Scholar 

  34. Zheng, J., Zhong, J., Chen, M., He, K.: A reinforced hybrid genetic algorithm for the traveling salesman problem. Comput. Oper. Res. 157, 106249 (2023). https://doi.org/10.1016/j.cor.2023.106249

    Article  MathSciNet  Google Scholar 

  35. Grefenstette, J.J., Gopal, R., Rosmaita, B.J., Van Gucht, D.: Genetic algorithms for the traveling salesman problem. In: Proceedings of the 1st International Conference on Genetic Algorithms, Pittsburgh, PA, USA, pp. 160–168 (1985)

    Google Scholar 

  36. Baha, A., Hasan, J.W., Mauro, O.: Assembly design semantic recognition using SolidWorks-API. Int. J. Mech. Eng. Robot. Res. 5(4), 280–287 (2016). https://doi.org/10.18178/ijmerr.5.4.280-287

  37. Benmamoun, Z., Hachimi, H., Amine, A.: Inventory management optimization using lean six-sigma Case of Spare parts Moroccan company, presented at the Proceedings of the International Conference on Industrial Engineering and Operations Management, 2017, pp. 1722–1730

    Google Scholar 

  38. Elkhechafi, M., Hachimi, H., Elkettani, Y.: A new hybrid firefly with genetic algorithm for global optimization. Int. J. Manag. Appl. Sci. 3, 47–51 (2017)

    Google Scholar 

  39. Elkhechafi, M., Hachimi, H., Elkettani, Y.: A new hybrid cuckoo search and firefly optimization. Monte Carlo Methods Appl. 24(1), 71–77 (2018)

    Article  MathSciNet  Google Scholar 

  40. Hong, J., Chiou, R.Y., Kwon, Y.J.: Information visualization of networked assembly robots. Int. J. Mech. Eng. Robot. Res. 4(4), 331–335 (2015). https://doi.org/10.18178/ijmerr.4.4.331-335

  41. Benmamoun, Z., Fethallah, W., Bouazza, S., Abdo, A.A., Serrou, D., Benchekroun, H.: A framework for sustainability evaluation and improvement of radiology service. J. Clean. Prod. 401, 136796. https://doi.org/10.1016/j.jclepro.2023.136796

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikhlef Jebbor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jebbor, I., Raouf, Y., Benmamoun, Z., Hachimi, H. (2024). Process Improvement of Taping for an Assembly Electrical Wiring Harness. In: Sheu, SH. (eds) Industrial Engineering and Applications – Europe. ICIEA-EU 2024. Lecture Notes in Business Information Processing, vol 507. Springer, Cham. https://doi.org/10.1007/978-3-031-58113-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58113-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58112-0

  • Online ISBN: 978-3-031-58113-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics