Skip to main content

On the Distribution of Synteny Blocks Under a Neutral Model of Genome Dynamics

  • Conference paper
  • First Online:
Comparative Genomics (RECOMB-CG 2024)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 14616))

Included in the following conference series:

  • 111 Accesses

Abstract

Prokaryotes are a rich source of versatile molecular functional systems that typically consist of multiple, interacting proteins. The study of such systems leads to fundamental biological discoveries, for example, understanding of the origins of innate and adaptive immunity in animals and also provides for the development of various biotechnology applications. The discovery of functional systems by microbial genome mining is facilitated by the fact that functionally coupled genes in bacterial and archaeal genomes often cluster in operons that are conserved across long evolutionary spans. However, accurate differentiation of operons from spurious gene clusters by genome comparison is a non-trivial task that depends on an underlying model of neutral genomes evolution. Here, we investigate the predictions of a gene clustering based on a recently developed stochastic model of genome rearrangement arising from horizontal gene transfer between evolving species along a phylogenetic tree. We focus on synteny blocks, that is, strings of genes conserved across genomes and derive analytic expressions for the expected number of synteny blocks of a given size (or of maximal size) in terms of the temporal separation between the genomes and the rates of evolutionary events. Our setting is similar to the heavily studied stick breaking problem family, but its discrete structure and the stochastic nature of the underlying process suggest a simple, independent model. We demonstrate the predictive power of this model both in simulations and on real data from the ATGC data base.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adato, O., Ninyo, N., Gophna, U., Snir, S.: Detecting horizontal gene transfer between closely related taxa. PLoS Comput. Biol. 11, e1004408 (2015)

    Article  Google Scholar 

  2. Bafna, V., Pevzner, P.A.: Genome rearrangements and sorting by reversals. SIAM J. Comput. 25(2), 272–289 (1996)

    Article  MathSciNet  Google Scholar 

  3. Bejerano, G., et al.: Ultraconserved elements in the human genome. Science 304(5675), 1321–5 (2004)

    Article  Google Scholar 

  4. Biller, P., Guéguen, L., Tannier, E.: Moments of genome evolution by double cut-and-join. BMC Bioinform. 16(14), S7 (2015)

    Article  Google Scholar 

  5. Doolittle, W.: Lateral genomics. Trends Cell Biol. 9, M5–M8 (1999)

    Article  Google Scholar 

  6. Gogarten, J., Doolittle, W., Lawrence, J.: Prokaryotic evolution in light of gene transfer. Mol. Biol. Evol. 19, 2226–2238 (2002)

    Article  Google Scholar 

  7. Grimmett, G., Stirzaker, D.: Probability and Random Processes, 3rd edn. Oxford University Press, Oxford (2001)

    Book  Google Scholar 

  8. Holst, L.: On the lengths of the pieces of a stick broken at random. J. Appl. Probab. 17(3), 623–634 (1980)

    Article  MathSciNet  Google Scholar 

  9. Huson, D.H., Steel, M.: Phylogenetic trees based on gene content. Bioinformatics 20(13), 2044–2049 (2004)

    Article  Google Scholar 

  10. Katriel, G., et al.: Gene transfer-based phylogenetics: analytical expressions and additivity via birth-death theory. Syst. Biol. 72(6), 1403–1417 (2023)

    Article  Google Scholar 

  11. Koonin, E.V., Wolf, Y.I.: Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res. 36(21), 6688–6719 (2008)

    Article  Google Scholar 

  12. Korbel, J.O., Jensen, L.J., von Mering, C., Bork, P.: Analysis of genomic context: prediction of functional associations from conserved bidirectionally transcribed gene pairs. Nat. Biotechnol. 22(7), 911–917 (2004)

    Article  Google Scholar 

  13. Kristensen, D.M., Wolf, Y.I., Koonin, E.V.: ATGC database and ATGC-COGs: an updated resource for micro- and macro-evolutionary studies of prokaryotic genomes and protein family annotation. Nucleic Acids Res. 45(D1), D210–D218 (2017)

    Article  Google Scholar 

  14. Kullback, S., Leibler, R.: On information and sufficiency. The Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MathSciNet  Google Scholar 

  15. Lawrence, J.: Selfish operons: the evolutionary impact of gene clustering in prokaryotes and eukaryotes. Curr. Opin. Genet. Dev. 9, 642–648 (1999)

    Article  Google Scholar 

  16. Libeskind-Hadas, R., Wu, Y.-C., Bansal, M.S., Kellis, M.: Pareto-optimal phylogenetic tree reconciliation. Bioinformatics 30(12), i87–i95 (2014)

    Article  Google Scholar 

  17. Malke, H.: J. H. Miller and W. S. Reznikoff (editors), the operon (2nd edition). vii, 469 s., 128 abb., 36 tab. cold spring harbor 1980. cold spring harbor laboratory. Zeitschrift für allgemeine Mikrobiologie 21(9), 697–697 (1981)

    Google Scholar 

  18. Mathis, F.H.: A generalized birthday problem. SIAM Rev. 33(2), 265–270 (1991)

    Article  MathSciNet  Google Scholar 

  19. Mushegian, A., Koonin, E.: Gene order is not conserved in bacterial evolution. Trends Genet. 12, 289–290 (1996)

    Article  Google Scholar 

  20. Nadeau, J.H., Taylor, B.A.: Lengths of chromosomal segments conserved since divergence of man and mouse. Proc. Natl. Acad. Sci. 81(3), 814–818 (1984)

    Article  Google Scholar 

  21. Novichkov, P.S., Ratnere, I., Wolf, Y.I., Koonin, E.V., Dubchak, I.: ATGC: a database of orthologous genes from closely related prokaryotic genomes and a research platform for microevolution of prokaryotes. Nucleic Acids Res. 37, D448-454 (2009)

    Article  Google Scholar 

  22. Sankoff, D., Blanchette, M.: Multiple genome rearrangement and breakpoint phylogeny. J. Comput. Biol. 5(3), 555–570 (1998)

    Article  Google Scholar 

  23. Sankoff, D., El-Mabrouk, N.: Genome rearrangement. In: Jiang, T., Xu, Y., Zhang, M. (eds.) Current Topics in Computational Molecular Biology. CRC Press (2002)

    Google Scholar 

  24. Sankoff, D., Leduc, G., Antoine, N., Paquin, B., Lang, B.F., Cedergren, R.: Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. Proc. Natl. Acad. Sci. 89(14), 6575–6579 (1992)

    Article  Google Scholar 

  25. Sankoff, D., Nadeau, J.H.: Conserved synteny as a measure of genomic distance. Discrete Appl. Math. 71(1–3), 247–257 (1996)

    Article  MathSciNet  Google Scholar 

  26. Serdoz, S., et al.: Maximum likelihood estimates of pairwise rearrangement distances. J. Theor. Biol. 423, 31–40 (2017)

    Article  MathSciNet  Google Scholar 

  27. Setubal, J.C., Almeida, N.F., Wattam, A.R.: Comparative genomics for prokaryotes. Methods Mol. Biol. 1704, 55–78 (2018)

    Article  Google Scholar 

  28. Sevillya, G., Doerr, D., Lerner, Y., Stoye, J., Steel, M., Snir, S.: Horizontal gene transfer phylogenetics: a random walk approach. Mol. Biol. Evol. 37(5), 1470–1479 (2019)

    Article  Google Scholar 

  29. Shifman, A., Ninyo, N., Gophna, U., Snir, S.: Phylo SI: a new genome-wide approach for prokaryotic phylogeny. Nucleic Acids Res. 42(4), 2391–2404 (2013)

    Article  Google Scholar 

  30. Sjöstrand, J., Tofigh, A., Daubin, V., Arvestad, L., Sennblad, B., Lagergren, J.: A Bayesian method for analyzing lateral gene transfer. Syst. Biol. 63(3), 409–420 (2014)

    Article  Google Scholar 

  31. Snel, B., Bork, P., Huynen, M.A.: Genomes in flux: the evolution of archaeal and proteobacterial gene content. Genome Res. 12(1), 17–25 (2002)

    Article  Google Scholar 

  32. Stolzer, M., Lai, H., Xu, M., Sathaye, D., Vernot, B., Durand, D.: Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees. Bioinformatics 28(18), i409–i415 (2012)

    Article  Google Scholar 

  33. Szöllősi, G.J., Tannier, E., Lartillot, N., Daubin, V.: Lateral gene transfer from the dead. Syst. Biol. 62(3), 386–397 (2013)

    Article  Google Scholar 

  34. Teichmann, S.A., Babu, M.M.: Conservation of gene co-regulation in prokaryotes and eukaryotes. Trends Biotechnol. 20(10), 407–410 (2002)

    Article  Google Scholar 

  35. Verreault, W.: MacMahon partition analysis: a discrete approach to broken stick problems. J. Comb. Theory Ser. A 187, 105571 (2022)

    Article  MathSciNet  Google Scholar 

  36. Wang, L.-S., Warnow, T.: Estimating true evolutionary distances between genomes. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, pp. 637–646. ACM (2001)

    Google Scholar 

  37. Wolf, Y.I., Makarova, K.S., Lobkovsky, A.E., Koonin, E.V.: Two fundamentally different classes of microbial genes. Nat. Microbiol. 2, 16208 (2016)

    Article  Google Scholar 

  38. Wolf, Y.I., Rogozin, I.B., Kondrashov, A.S., Koonin, E.V.: Genome alignment, evolution of prokaryotic genome organization, and prediction of gene function using genomic context. Genome Res. 11(3), 356–372 (2001)

    Article  Google Scholar 

  39. Woodhams, M., Steane, D.A., Jones, R.C., Nicolle, D., Moulton, V., Holland, B.R.: Novel distances for Dollo data. Syst. Biol. 62(1), 62–77 (2012)

    Article  Google Scholar 

  40. Zhaxybayeva, O., Gogarten, J.P., Charlebois, R.L., Doolittle, W.F., Papke, R.T.: Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events. Genome Res. 16(9), 1099–1108 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank the reviewers and in particular Reviewer 1 for his very meticulous examination and enlightening comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagi Snir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Snir, S., Wolf, Y., Brezner, S., Koonin, E., Steel, M. (2024). On the Distribution of Synteny Blocks Under a Neutral Model of Genome Dynamics. In: Scornavacca, C., Hernández-Rosales, M. (eds) Comparative Genomics. RECOMB-CG 2024. Lecture Notes in Computer Science(), vol 14616. Springer, Cham. https://doi.org/10.1007/978-3-031-58072-7_9

Download citation

Publish with us

Policies and ethics