Skip to main content

Inferring Transcript Phylogenies from Transcript Ortholog Clusters

  • Conference paper
  • First Online:
Comparative Genomics (RECOMB-CG 2024)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 14616))

Included in the following conference series:

  • 85 Accesses

Abstract

Alternative Splicing (AS) is a mechanism in eukaryotic gene expression by which different combinations of introns are spliced to produce distinct transcript isoforms from a gene. Recent studies have highlighted that the transcript isoforms of human genes are often conserved in orthologous genes from various species. The conserved transcripts are referred to as transcript orthologs, and the identification of transcript ortholog groups provides valuable insights for studying their functions. Exploring the evolutionary histories of transcripts enhances our understanding of their proteins functions and their origins. It also allows us to better understand the role of alternative splicing in transcript evolution.

In a previous work, we addressed the problem of inferring orthology and paralogy relations at the transcript level. In this work, we focus on the reconstruction of transcript evolutionary histories. We present a progressive supertree construction algorithm that relies on a dynamic programming approach to infer a transcript phylogeny based on precomputed clusters of orthologous transcripts. A phylogeny is constructed iteratively by performing pairwise supertree construction at each internal node of a guide tree defined for the set of transcript clusters.

We applied our algorithm to transcripts from simulated gene families, as well as to two case studies involving the transcripts of real gene families-specifically, the TAF6 and PAX6 gene families from the Ensembl-Compara database. The results align with those of previous studies aimed at reconstructing transcript phylogenies, while improving the computing time. The results also show that accurate transcript phylogenies can be obtained by first inferring accurately the pairwise homology relationships among transcripts and then using the latter to compute a phylogeny that agrees with the homology relationships. The results obtained for the simulated and real gene families are available at https://github.com/UdeS-CoBIUS/TranscriptPhylogenies. The Supplementary material can be found at https://zenodo.org/records/10798958.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adami, C., Ofria, C., Collier, T.C.: Evolution of biological complexity. Proc. Natl. Acad. Sci. 97(9), 4463–4468 (2000)

    Google Scholar 

  2. Ait-Hamlat, A., Zea, D.J., Labeeuw, A., Polit, L., Richard, H., Laine, E.: Transcripts’ evolutionary history and structural dynamics give mechanistic insights into the functional diversity of the jnk family. J. Mol. Biol. 432(7), 2121–2140 (2020)

    Google Scholar 

  3. Araújo, G.S., Telles, G.P., Walter, M.E.M., Almeida, N.F.: Distance-based live phylogeny. In: International Conference on Bioinformatics Models, Methods and Algorithms, vol. 4, pp. 196–201. SCITEPRESS (2017)

    Google Scholar 

  4. Black, D.L.: Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology. Cell 103(3), 367–370 (2000)

    Google Scholar 

  5. Chauve, C., El-Mabrouk, N.: New perspectives on gene family evolution: losses in reconciliation and a link with supertrees. In: Batzoglou, S. (ed.) RECOMB 2009. LNCS, vol. 5541, pp. 46–58. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02008-7_4

    Chapter  Google Scholar 

  6. Christinat, Y., Moret, B.M.E.: Inferring transcript phylogenies. BMC Bioinformatics 13(9), S1 (2012)

    Article  Google Scholar 

  7. Christinat, Y., Moret, B.M.E.: A transcript perspective on evolution. IEEE/ACM Trans. Comput. Biol. Bioinf. 10(6), 1403–1411 (2013)

    Article  Google Scholar 

  8. Desper, R., Gascuel, O.: Theoretical foundation of the balanced minimum evolution method of phylogenetic inference and its relationship to weighted least-squares tree fitting. Mol. Biol. Evol. 21(3), 587–598 (2004)

    Article  Google Scholar 

  9. Gascuel, O.: Mathematics of Evolution and Phylogeny. OUP Oxford, Oxford (2005)

    Google Scholar 

  10. Gouy, M., Tannier, E., Comte, N., Parsons, D.P.: Seaview version 5: a multiplatform software for multiple sequence alignment, molecular phylogenetic analyses, and tree reconciliation. In: Katoh, K. (ed.) Multiple Sequence Alignment. MMB, vol. 2231, pp. 241–260. Springer, New York (2021). https://doi.org/10.1007/978-1-0716-1036-7_15

    Chapter  Google Scholar 

  11. Harrow, J., et al.: Gencode: the reference human genome annotation for the encode project. Genome Res. 22(9), 1760–1774 (2012)

    Article  Google Scholar 

  12. Kidd, K.K., Sgaramella-Zonta, L.A.: Phylogenetic analysis: concepts and methods. Am. J. Hum. Genet. 23(3), 235 (1971)

    Google Scholar 

  13. Kuitche, E., Jammali, S., Ouangraoua, A.: Simspliceevol: alternative splicing-aware simulation of biological sequence evolution. BMC Bioinformatics 20(20), 640 (2019)

    Article  Google Scholar 

  14. Kuitche, E., Lafond, M., Ouangraoua, A.: Reconstructing protein and gene phylogenies using reconciliation and soft-clustering. J. Bioinform. Comput. Biol. 15(06), 1740007 (2017)

    Article  Google Scholar 

  15. Lafond, M., Chauve, C., El-Mabrouk, N., Ouangraoua, A.: Gene tree construction and correction using supertree and reconciliation. IEEE/ACM Trans. Comput. Biol. Bioinf. 15(5), 1560–1570 (2017)

    Google Scholar 

  16. Ouedraogo, W.Y.D.D., Ouangraoua, A.: Inferring clusters of orthologous and paralogous transcripts. In: Jahn, K., Vinar, T. (eds.) Comparative Genomics. RECOMB-CG 2023. LNCS, vol. 13883, pp. 19–34. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-36911-7_2

  17. Pauplin, Y.: Direct calculation of a tree length using a distance matrix. J. Mol. Evol. 51, 41–47 (2000)

    Article  Google Scholar 

  18. Ranwez, V., Douzery, E.J., Cambon, C., Chantret, N., Delsuc, F.: MACSE V2: toolkit for the alignment of coding sequences accounting for frameshifts and stop codons. Mol. Biol. Evol. 35(10), 2582–2584 (2018)

    Google Scholar 

  19. Rzhetsky, A., Nei, M.: Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol. Biol. Evol. 10(5), 1073–1095 (1993)

    Google Scholar 

  20. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4(4), 406–425 (1987)

    Google Scholar 

  21. Szollosi, G.J., Tannier, E., Daubin, V., Boussau, B.: The inference of gene trees with species trees. Syst. Biol. 64(1), e42–e62 (2015)

    Google Scholar 

  22. Telles, G.P., Almeida, N.F., Minghim, R., Walter, M.E.M.: Live phylogeny. J. Comput. Biol. 20(1), 30–37 (2013)

    Google Scholar 

  23. Thomas, P.D.: GIGA: a simple, efficient algorithm for gene tree inference in the genomic age. BMC Bioinformatics 11(1), 1–19 (2010)

    Google Scholar 

  24. Zea, D.J., Laskina, S., Baudin, A., Richard, H., Laine, E.: Assessing conservation of alternative splicing with evolutionary splicing graphs. Genome Res. 31(8), 1462–1473 (2021)

    Google Scholar 

  25. Zerbino, D.R., et al.: Ensembl 2018. Nucl. Acids Res. 46(D1), D754–D761 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aida Ouangraoua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ouedraogo, W.Y.D.D., Ouangraoua, A. (2024). Inferring Transcript Phylogenies from Transcript Ortholog Clusters. In: Scornavacca, C., Hernández-Rosales, M. (eds) Comparative Genomics. RECOMB-CG 2024. Lecture Notes in Computer Science(), vol 14616. Springer, Cham. https://doi.org/10.1007/978-3-031-58072-7_3

Download citation

Publish with us

Policies and ethics