Skip to main content

A Novel Bayes’ Theorem for Upper Probabilities

  • Conference paper
  • First Online:
Epistemic Uncertainty in Artificial Intelligence (Epi UAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14523))

  • 89 Accesses

Abstract

In their seminal 1990 paper, Wasserman and Kadane establish an upper bound for the Bayes’ posterior probability of a measurable set A, when the prior lies in a class of probability measures \(\mathcal {P}\) and the likelihood is precise. They also give a sufficient condition for such upper bound to hold with equality. In this paper, we introduce a generalization of their result by additionally addressing uncertainty related to the likelihood. We give an upper bound for the posterior probability when both the prior and the likelihood belong to a set of probabilities. Furthermore, we give a sufficient condition for this upper bound to become an equality. This result is interesting on its own, and has the potential of being applied to various fields of engineering (e.g. model predictive control), machine learning, and artificial intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Recall that in the weak\(^\star \) topology, a net \((P_\alpha )_{\alpha \in I}\) converges to P if and only if \(P_\alpha (A) \rightarrow P(A)\), for all \(A \in \mathcal {F}\). See also results presented in [29, Appendix D3].

References

  1. Augustin, T., Coolen, F.P.A., De Cooman, G., Troffaes, M.C.M. (eds.): Introduction to Imprecise Probabilities. Wiley Series in Probability and Statistics, Wiley, Hoboken (2014)

    Google Scholar 

  2. Berger, J.O.: The robust Bayesian viewpoint. In: Kadane, J.B. (ed.) Robustness of Bayesian Analyses. North-Holland, Amsterdam (1984)

    Google Scholar 

  3. Caprio, M., et al.: Imprecise Bayesian neural networks (2023). arXiv:2302.09656

  4. Caprio, M., Gong, R.: Dynamic imprecise probability kinematics. In: Proceedings of Machine Learning Research, vol. 215, pp. 72–83 (2023)

    Google Scholar 

  5. Casella, G.: An introduction to empirical Bayes data analysis. Am. Stat. 39(2), 83–87 (1985)

    Article  MathSciNet  Google Scholar 

  6. Cerreia-Vioglio, S., Maccheroni, F., Marinacci, M.: Ergodic theorems for lower probabilities. Proc. Am. Math. Soc. 144, 3381–3396 (2015)

    Article  MathSciNet  Google Scholar 

  7. Cozman, F.G.: Credal networks. Artif. Intell. 120, 199–233 (2000)

    Article  MathSciNet  Google Scholar 

  8. Depeweg, S., Hernandez-Lobato, J.M., Doshi-Velez, F., Udluft, S.: Decomposition of uncertainty in Bayesian deep learning for efficient and risk-sensitive learning. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 1184–1193. PMLR (2018)

    Google Scholar 

  9. Ellsberg, D.: Risk, ambiguity, and the Savage axioms. Q. J. Econ. 75(4), 643–669 (1961)

    Article  MathSciNet  Google Scholar 

  10. Epstein, L.G., Wang, T.: Intertemporal asset pricing under Knightian uncertainty. Econometrica 62(2), 283–322 (1994)

    Article  Google Scholar 

  11. de Finetti, B.: Theory of Probability, vol. 1. Wiley, New York (1974)

    Google Scholar 

  12. de Finetti, B.: Theory of Probability, vol. 2. Wiley, New York (1975)

    Google Scholar 

  13. Giacomini, R., Kitagawa, T.: Robust Bayesian inference for set-identified models. Econometrica 89(4), 1519–1556 (2021)

    Article  MathSciNet  Google Scholar 

  14. Gilboa, I., Marinacci, M.: Ambiguity and the Bayesian paradigm. In: Acemoglu, D., Arellano, M., Dekel, E. (eds.) Advances in Economics and Econometrics, Tenth World Congress, vol. 1. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  15. Gong, R., Meng, X.L.: Judicious judgment meets unsettling updating: dilation, sure loss, and Simpson’s paradox. Stat. Sci. 36(2), 169–190 (2021)

    Article  MathSciNet  Google Scholar 

  16. Grünwald, P., van Ommen, T.: Inconsistency of Bayesian inference for misspecified linear models, and a proposal for repairing it. Bayesian Anal. 12(4), 1069–1103 (2017)

    Article  MathSciNet  Google Scholar 

  17. Huber, P.J., Ronchetti, E.M.: Robust Statistics. Wiley Series in Probability and Statistics, 2nd edn. Wiley, Hoboken (2009)

    Book  Google Scholar 

  18. Hüllermeier, E., Waegeman, W.: Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods. Mach. Learn. 3(110), 457–506 (2021)

    Article  MathSciNet  Google Scholar 

  19. Kapoor, S., Maddox, W.J., Izmailov, P., Wilson, A.G.: On uncertainty, tempering, and data augmentation in Bayesian classification. In: Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A. (eds.) Advances in Neural Information Processing Systems, vol. 35, pp. 18211–18225. Curran Associates, Inc. (2022). https://proceedings.neurips.cc/paper_files/paper/2022/file/73e018a0123b35a3e64269526f9096c9-Paper-Conference.pdf

  20. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  21. Klibanoff, P., Hanany, E.: Updating preferences with multiple priors. Theor. Econ. 2(3), 261–298 (2007)

    Google Scholar 

  22. Marinacci, M., Montrucchio, L.: Introduction to the mathematics of ambiguity. In: Gilboa, I. (ed.) Uncertainty in Economic Theory: A Collection of Essays in Honor of David Schmeidler’s 65th Birthday. Routledge, London (2004)

    Google Scholar 

  23. Rakovi, S.V., Levine, W.S.: Handbook of Model Predictive Control, 1st edn. Birkhäuser, Basel (2018)

    Google Scholar 

  24. Rudin, W.: Principles of Mathematical Analysis, 3rd edn. McGraw-Hill, New York (1976)

    Google Scholar 

  25. Sale, Y., Caprio, M., Hüllermeier, E.: Is the volume of a credal set a good measure for epistemic uncertainty? In: Evans, R.J., Shpitser, I. (eds.) Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence. Proceedings of Machine Learning Research, vol. 216, pp. 1795–1804. PMLR (2023)

    Google Scholar 

  26. Smith, L., Gal, Y.: Understanding measures of uncertainty for adversarial example detection. arXiv preprint arXiv:1803.08533 (2018)

  27. Troffaes, M.C., de Cooman, G.: Lower Previsions. Wiley, Chichester (2014)

    Book  Google Scholar 

  28. Walley, P.: Coherent lower (and upper) probabilities. Technical report, University of Warwick, Coventry (1981)

    Google Scholar 

  29. Walley, P.: Statistical Reasoning with Imprecise Probabilities, Monographs on Statistics and Applied Probability, vol. 42. Chapman and Hall, London (1991)

    Book  Google Scholar 

  30. Wasserman, L.A., Kadane, J.B.: Bayes’ theorem for Choquet capacities. Ann. Stat. 18(3), 1328–1339 (1990)

    Article  MathSciNet  Google Scholar 

  31. Wimmer, L., Sale, Y., Hofman, P., Bischl, B., Hüllermeier, E.: Quantifying aleatoric and epistemic uncertainty in machine learning: are conditional entropy and mutual information appropriate measures? In: Evans, R.J., Shpitser, I. (eds.) Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence. Proceedings of Machine Learning Research, vol. 216, pp. 2282–2292. PMLR (2023)

    Google Scholar 

Download references

Acknowledgments

Michele Caprio would like to acknowledge partial funding by the Army Research Office (ARO MURI W911NF2010080). Yusuf Sale is supported by the DAAD programme Konrad Zuse Schools of Excellence in Artificial Intelligence, sponsored by the Federal Ministry of Education and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Caprio .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Caprio, M., Sale, Y., Hüllermeier, E., Lee, I. (2024). A Novel Bayes’ Theorem for Upper Probabilities. In: Cuzzolin, F., Sultana, M. (eds) Epistemic Uncertainty in Artificial Intelligence . Epi UAI 2023. Lecture Notes in Computer Science(), vol 14523. Springer, Cham. https://doi.org/10.1007/978-3-031-57963-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57963-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57962-2

  • Online ISBN: 978-3-031-57963-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics