Skip to main content

The Caribbean Mangroves Today

  • Chapter
  • First Online:
Origin and Evolution of Caribbean Mangroves

Part of the book series: Ecological Studies ((ECOLSTUD,volume 252))

  • 31 Accesses

Abstract

Extant mangroves cover a total of approximately 14,700 km2 along Caribbean coasts, which represent ~10% of the total world’s mangrove extent. The main components, in terms of fidelity, physiology, structure, and abundance (also known as major true mangrove elements of mangrove-forming trees), are Rhizophora (Rhizophoraceae), Avicennia (Acanthaceae), and Laguncularia (Combretaceae). Other minor true-mangrove elements are Pelliciera (Tetrameristaceae) and Acrostichum (Pteridaceae), which occupy marginal mangrove environments. A third category of ~20 mangrove associates are not restricted to mangrove communities and lack morphological and physiological adaptations to grow in saline waters. Relevant examples are the herb Crenea (Lythraceae) and the tree Conocarpus (Combretaceae). Biogeographically, the Caribbean mangroves are within the Atlantic-East Pacific (AEP) region, having a significantly poorer mangrove flora than the Indo-West Pacific (IWP) region, both separated by the continental African barrier. Caribbean mangroves typically develop sea–land zonation along salinity gradients governed by topography and tidal influence. The most common pattern, from sea to land, is Rhizophora-(Pelliciera)-Avicennia-Laguncularia-Conocarpus. Pollen and spores (sporomorphs) from true and associate mangrove elements are the most used evidence to reconstruct the ecological, biogeographical, and evolutionary trends of these communities. This book gathers the available sporomorph records (156 localities) in a dataset called CARMA (CARibbean MAngroves) as the basis for the following discussions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aburto-Oropeza O, Burelo-Campo CM, Ezcurra E et al (2021) Relict inland mangrove ecosystem reveals Last Interglacial sea levels. Proc Natl Acad Sci USA 118:e2024518118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adomat F, Gischler E (2015) Sedimentary patterns and evolution of coastal environments during the Holocene in central Belize, Central America. J Coast Res 31:802–826

    Article  CAS  Google Scholar 

  • Aragón-Moreno AA, Islebe GA, Roy PD et al (2018) Climate forcings on vegetation of the southern Yucatán Peninsula (Mexico) during the middle to late Holocene. Palaeogeogr Palaeoclimatol Palaeoecol 495:214–226

    Article  Google Scholar 

  • Bartlett AS, Barghoorn ES (1973) Phytogeographic history of the Isthmus of Panama during the past 12,000 years (a history of vegetation, climate and sea-level change). In: Graham A (ed) Vegetation and vegetational history of Northern Latin America. Elsevier, Amsterdam, pp 203–299

    Google Scholar 

  • Bermúdez MA, Hoorn C, Bernet M et al (2017) The detrital record of late-Miocene to Pliocene surface uplift and exhumation of the Venezuelan Andes in the Maracaibo and Barinas foreland basins. Basin Res 29:370–395

    Article  Google Scholar 

  • Biswas SR, Biswas PL, Limon SH et al (2018) Plant invasion in mangrove forests worldwide. Forest Ecol Manag 429:480–492

    Article  Google Scholar 

  • Blanco JF, Estrada EA, Ortiz LF et al (2012) Ecosystem-wide impacts of deforestation in mangroves: the Urabá Gulf (Colombian Caribbean) case study. ISRN Ecol 2012:958709

    Google Scholar 

  • Bocanegra-Ramírez DM, Li H-C, Domínguez G et al (2019) Holocene climate change and sea level oscillations in the pacific coast of Mexico. Quat Int 528:100–108

    Article  Google Scholar 

  • Bunting P, Rosenqvist A, Hilarides L et al (2022) Global Mangrove Watch: updated 2010 mangrove forest extent (v2.5). Remote Sens 10:1669

    Article  Google Scholar 

  • Burgess C, Taylor M, Spencer N et al (2018) Estimating damages from climate-related natural disasters for the Caribbean at 1.5 °C and 2 °C global warming above preindustrial levels. Reg Environ Chang 18:2297–2312

    Article  Google Scholar 

  • Caffrey MA, Horn SP, Orvis KH et al (2015) Holocene environmental change at Laguna Saladilla, coastal north Hispaniola. Palaeogeogr Palaeoclimatol Palaeoecol 436:9–22

    Article  Google Scholar 

  • Campbell JD, Taylor MA, Stephenson TS et al (2011) Future climate of the Caribbean from a regional climate model. Int J Climatol 31:1866–1878

    Article  Google Scholar 

  • Carrillo-Bastos A, Islebe GA, Torrescano-Valle N (2013) 3800 years of quantitative precipitation reconstruction from the northwest Yucatan Peninsula. PLoS One 8:e84333

    Article  PubMed  PubMed Central  Google Scholar 

  • Castañeda-Posadas C, Correa-Metrio A, Escobar J et al (2022) Mid to late Holocene sea-level rise and precipitation variability recorded in the fringe mangroves of the Caribbean coast of Panama. Palaeogeogr Palaeoclimatol Palaeoecol 592:110918

    Article  Google Scholar 

  • Castaño A, Urrego L, Bernal G (2010) Dinámica del manglar en el complejo lagunar de Cispatá (Caribe colombiano) en los últimos 900 años. Rev Biol Trop 58:1347–1366

    PubMed  Google Scholar 

  • Church JA, White NJ (2006) A 20th century acceleration in global sea-level rise. Geophys Res Lett 33:94–97

    Article  Google Scholar 

  • Cohen A, Wiedemann HU (1973) Distribution and depositional history of some pre-lagoonal Holocene sediments in the Ciénaga Grande de Santa Marta, Colombia. Mitt Inst Colombo-Alemán Invest Cient 7:139–154

    Google Scholar 

  • Cohen MCL, Lara RJ, Cuevas E et al (2016) Effects of sea-level rise and climatic changes on mangroves from southwestern littoral PR during the middle and late Holocene. Catena 143:187–200

    Article  CAS  Google Scholar 

  • Collins SV, Reinhardt EG, Werner CL et al (2015) Late Holocene mangrove development and onset of sedimentation in the Yax Chen cave system (Ox Bel Ha) Yucatan, Mexico: implications for using cave sediments as a sea-level indicator. Palaeogeogr Palaeoclimatol Palaeoecol 438:124–134

    Article  Google Scholar 

  • Colmenares OA (1988) A palynological study of samples from three wells of the Boscan Field, Venezuela. Rev Técnica INTEVEP 8:83–97

    Google Scholar 

  • Colmenares OA, Teran L (1993) A biostratigraphic study of Paleogene sequences in southwestern Venezuela. Palynology 17:67–89

    Article  Google Scholar 

  • Dangremond EM, Feller IC, Sousa WP (2015) Environmental tolerances of rare and common mangroves along light and salinity gradients. Oecologia 179:1187–1198

    Article  PubMed  Google Scholar 

  • Davidson DE (2007) Modern pollen spectra from mangrove ecosystems of the sabana-camagüey archipelago and Ciego de Ávila, Cuba. MS diss, Univ Toronto, Canada

    Google Scholar 

  • De la Parra F, Pinzon D, Mantilla-Duran F et al (2021) Marine-lacustrine systems during the Eocene in northern South America – palynological evidence from Colombia. J S Am Earth Sci 108:103188

    Article  Google Scholar 

  • DeYoe H, Lonard RI, Judd FW et al (2020) Biological flora of the tropical and subtropical intertidal zone: literature review for Rhizophora mangle L. J Coast Res 36:857–884

    Article  CAS  Google Scholar 

  • Dueñas H (1980) Palynology of Oligocene-Miocene strata of borehole Q-E-22, Planeta Rica, northern Colombia. Rev Palaeobot Palynol 30:313–328

    Article  Google Scholar 

  • Dueñas H, Van der Hammen T (2007) Significado geológico y asociaciones palinológicas de las formaciones Diablo Inferior (Mioceno Tardío) y San Fernando Superior (Mioceno Medio), piedemonte cuenca de los Llanos Orientales, Colombia. Rev Acad Colomb Cienc 31:481–498

    Google Scholar 

  • Duke NC (2017) Mangrove floristics and biogeography revisited: further deductions from biodiversity hot spots, ancestral discontinuities, and common evolutionary processes. In: Rivera-Monroy VH et al (eds) Mangrove ecosystems: a global biogeographic perspective. Springer, Berlin, pp 17–53

    Chapter  Google Scholar 

  • Duke NC (2020) A systematic revision of the vulnerable mangrove genus Pelliciera (Tetrameristaceae) in equatorial Ammerica. Blumea 65:107–120

    Article  Google Scholar 

  • Duke NC, Meyneccke J-O, Dittman S et al (2017) A world without mangroves? Science 317:41b–42b

    Article  Google Scholar 

  • Durán-Quesada AM, Sori R, Ordoñez P et al (2020) Climate perspectives in the Intra-Americas Seas. Atmos 11:959

    Article  Google Scholar 

  • Ellison AM, Farnsworth EJ, Merkt RE (1999) Origins of mangrove ecosystems and the marine biodiversity anomaly. Glob Ecol Biogeogr 8:95–115

    Article  Google Scholar 

  • Erdtman G (1986) Pollen morphology and plant taxonomy. Angiosperms. EJ Brill, Leiden

    Google Scholar 

  • Escarraga-Paredes DS, Torrescano-Valle N, Islebe GA (2014) Análisis de la relación vegetación-lluvia de polen actual de las comunidades vegetales en el nororoeste de la Península de Yucatán, Mexico. Polibotánica 38:27–52

    Google Scholar 

  • Flenley JR (1979) The equatorial rain forest: a geological history. Butterworths, London

    Google Scholar 

  • Frederiksen NO (1985) Review of early Tertiary sporomorph paleoecology. Am Assoc Strat Palynol Contr Ser 19:1–92

    Google Scholar 

  • Gabriel JJ, Reinhardt EG, Peros MC et al (2009) Palaeoenvironmental evolution of cenote Aktun Ha (Carwash) on the Yucatan Peninsula, Mexico and its response to Holocene sea-level rise. J Paleolimnol 42:199–213

    Article  Google Scholar 

  • García Y, Rangel J, Jaramillo A (2022) Environmental changes during the last 1800 years in the Neguanje mangrove, Tayrona National Natural Park, Colombian Caribbean. Rev Acad Colomb Cien Exact Fís Nat 46:90–107

    Google Scholar 

  • García-Fuentes A, Lendínez-Barriga ML, Torres-Cordero JA et al (2020) A study on the mangrove formations of the Neotropical-Austroamerican Kingdom. Phytocoenologia 50:137–162

    Article  Google Scholar 

  • Garzón S, Warny S, Bart PJ (2012) A palynological and sequence-stratigraphic study of Santonian-Maastrichtian strata from the Upper Magdalena Valley basin in central Colombia. Palynology 36(Suppl 1):112–133

    Article  Google Scholar 

  • Gee CT (2001) The mangrove palm Nypa in the geologic past of the New World. Wetl Ecol Manag 9:181–194

    Article  Google Scholar 

  • Gentry AH (1982) Phytogeographic patterns as evidence for a Choco refuge. In: Prance GT (ed) Biological diversification in the tropics. Columbia University Press, New York, pp 112–136

    Google Scholar 

  • Germeraad JH, Hopping CA, Muller J (1968) Palynology of Tertiary sediments from tropical areas. Rev Palaeobot Palynol 6:189–348

    Article  Google Scholar 

  • González C, Dupont LM (2009) Tropical salt marsh succession as sea-level indicator during Heinrich events. Quat Sci Rev 28:939–946

    Article  Google Scholar 

  • González Guzmán AE (1967) A Palynological Study of the Upper Los Cuervos and Mirador formations (Lower and Middle Eocene), Tibú Area, Colombia. EJ Brill, Amsterdam

    Google Scholar 

  • González C, Urrego LE, Martínez JI et al (2010) Mangrove dynamics in the southwestern Caribbean since the ‘Little Ice Age’: a history of human and natural disturbances. The Holocene 20:849–861

    Article  Google Scholar 

  • Graham A (1976) Studies in Neotropical paleobotany. II. The Miocene communties of Veracruz. Mexico Ann Missouri Bot Gard 63:787–842

    Article  Google Scholar 

  • Graham A (1977) New records of Pelliciera (Theaceae/Pellicieraceae) in the Tertiary of the Caribbean. Biotropica 9:48–52

    Article  Google Scholar 

  • Graham A (1985) Studies in Neotropical paleobotany. IV. The Eocene communities of Panama. Ann Missouri Bot Gard 72:504–534

    Article  Google Scholar 

  • Graham A (1987) Miocene communities and paleoenviroments of southern Costa Rica. Am J Bot 74:1501–1518

    Article  Google Scholar 

  • Graham A (1988a) Studies in Neotropical paleobotany. V. The lower Miocene communities of Panama-the Culebra Formation. Ann Missouri Bot Gard 75:1440–1466

    Article  Google Scholar 

  • Graham A (1988b) Studies in Neotropical paleobotany. VI. The lower Miocene communities of Panama-the Cucaracha Formation. Ann Missouri Bot Gard 75:1467–1479

    Article  Google Scholar 

  • Graham A (1989) Studies in Neotropical paleobotany, VII. The lower Miocene communities of Panama-the La Boca Formation. Ann Missouri Bot Gard 76:50–66

    Article  Google Scholar 

  • Graham A (1990a) Late Tertiary microfossil flora from the Republic of Haiti. Am J Bot 77:911–926

    Article  Google Scholar 

  • Graham A (1990b) New angiosperm records from the Caribbean Tertiary. Am J Bot 77:897–910

    Article  Google Scholar 

  • Graham A (1991) Studies in Neotropical botany. X. The Pliocene communities of Panama-composition, numerical representations, and paleocommunity paleoenvironmental reconstructions. Ann Missouri Bot Gard 78:465–475

    Article  Google Scholar 

  • Graham A (1995) Diversification of Gulf/Caribbean mangrove communities through Cenozoic time. Biotropica 27:20–27

    Article  Google Scholar 

  • Graham A (1998) Studies in Neotropical botany. XI. Late Tertiary vegetation and environments of southeastern Guatemala: palynofloras from the Mio-Pliocene Padre Miguel Group and the Pliocene Herrería Formation. Am J Bot 85:1409–1425

    Article  CAS  PubMed  Google Scholar 

  • Graham A (1999) Studies in Neotropical botany. XIII. An Oligo-Miocene palynoflora from Simojovel (Chiapas, Mexico). Am J Bot 86:17–31

    Article  CAS  PubMed  Google Scholar 

  • Graham A (2011) A natural history of the new world. The ecology and evolution of plants in the Americas. University Chicago Press, Chicago

    Google Scholar 

  • Graham SA (2013) Fossil records in the Lythraceae. Bot Rev 79:48–145

    Article  Google Scholar 

  • Graham A, Dilcher DL (1998) Studies in Neotropical botany. XII. A palynoflora from the Pliocene Rio Banano Formation of Costa Rica and the Neogene vegetation of Mesoamerica. Am J Bot 85:1426–1438

    Article  CAS  PubMed  Google Scholar 

  • Graham A, Jarzen DM (1969) Studies on Neotropical paleobotany. I. The Oligocene communities of Puerto Rico. Ann Missouri Bot Gard 56:308–357

    Article  Google Scholar 

  • Graham A, Cozadd D, Areces-Mallea A et al (2000) Studies in Neotropical paleobotany. XIV. A palynoflora from the Middle Eocene Saramaguacán Formation of Cuba. Am J Bot 87:1526–1539

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez-Ayala LV, Torrescano-Valle N, Islebe GA (2012) Reconstrucción paleoambiental del Holoceno tardío de la reserva Los Petenes. Rev Mex Cien Geol 29:749–763

    Google Scholar 

  • Hadly EA, Spaeth PA, Li C (2009) Niche conservatism above the species level. Proc Natl Acad Sci USA 106:19707–19714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hambalek N, Rull V, Di Giacomo E et al (1994) Evolución paleoecológica y paleoambiental de la secuencia del Neógeno en el Surco de Urumaco, Estado Falcón. Estudio palinológico y litológico. Bol Soc Venez Geól 1–2:7–19

    Google Scholar 

  • Hardage K, Street J, Herrera-Silveira JA et al (2022) Late Holocene environmental change in Celestum Lagoon, Yucatan, Mexico. J Paleolimnol 67:131–162

    Article  Google Scholar 

  • Helenes J, Cabrera D (2002) Oligo-Miocene palynomorph assemblages from eastern Venezuela. Palynology 27:5–25

    Google Scholar 

  • Herrera DA, Ault TR, Carrillo CM et al (2020) Dynamical characteristics of drought in the Caribbean from observations and simulations. J Clim 33:10773–10797

    Article  Google Scholar 

  • Hofman C-C (2002) Pollen distribution in sub-Recent sedimentary environments of the Orinoco Delta (Venezuela) – an actuo-palaeobotanical study. Rev Palaeobot Palynol 119:191–217

    Article  Google Scholar 

  • Hofman CL, Pagán-Jiménez JR, Fiekd MH et al (2021) Mangrove archives: unravelling human-environment interactions from deeply buried deposits at the site Anse Trabaud, Martinique, Lesser Antilles (1290-780 cal BP). Environ Archaeol. https://doi.org/10.1080/14614103.2021.1921676

  • Horn SP (1985) Preliminary pollen analysis of Quaternary sedimentsfrom Deep Sea Drilling Project site 565, western Costa Rica. Init Rep Deep Sea Drill Proj 84:533–547

    Google Scholar 

  • IPCC (2019) Global Warming of 1.5 °C. Cambridge University Press, Cambridge

    Google Scholar 

  • Islebe GA, Villanueva-Gutiérrez R, Sánchez O (2001) Relación lluvia de polen-vegetación en selvas de Quintana Roo. Bol Soc Bot Mexico 69:31–38

    Google Scholar 

  • Jaramillo C, Bayona G (2000) Mangrove distribution during the Holocene in Tribugá Gulf, Colombia. Biotropica 32:14–22

    Google Scholar 

  • Jaramillo C, Dilcher DL (2001) Middle Paleogene palynology of Central Colombia, South America: a study of pollen and spores from tropical latitudes. Palaeontographica B 258:87–213

    Article  Google Scholar 

  • Jaramillo C, Bayona G, Pardo-Trujillo A et al (2007) The palynology of the Cerrejón Formarion (Upper Paleocene) of northern Colombia. Palynology 31:153–189

    Google Scholar 

  • Jaramillo C, Romero I, D’Apolito C et al (2017) Miocene flooding events of western Amazonia. Sci Adv 3:e1601693

    Article  PubMed  PubMed Central  Google Scholar 

  • Jessen CA, Pedersen JBT, Bartholdy J et al (2008) A late Holocene palaeoenvironmental record from Altona bay, St. Croix. US Virgin Islands Geogr Tidsskr 108:59–70

    Article  Google Scholar 

  • Jones PD, Harpham C, Harris I et al (2015) Long-term trends in precipitation and temperature across the Caribbean. Int J Climatol 36:3314–3333

    Article  Google Scholar 

  • Joo-Chang JC, Islebe GA, Torrescano-Valle N (2015) Mangrove history during middle- and late-Holocene in Pacific south-eastern Mexico. The Holocene 25:651–662

    Article  Google Scholar 

  • Khan NS, Vane CH, Engelhart SE et al (2019) The application of δ13C, TOC and C/N geochemistry of mangrove sediments to reconstruct Holocene paleoenvironments and relative sea levels, Puerto Rico. Mar Geol 415:105963

    Article  CAS  Google Scholar 

  • Kuyl OS, Muller J, Waterbolk HT (1955) The application of palynology to oil geology with reference to western Venezuela. Geol Mijnb 3:49–76

    Google Scholar 

  • Lamy A (1986) Plio-Pleistocene palynology and visual kerogen studies, Trinidad, W.I., with emphasis on the Columbus Basin. Geol Soc Trinidad and Tobago, Geol Conf Trans, pp 114–127

    Google Scholar 

  • Lane CS, Clark JJ, Knudsen A et al (2013) Late-Holocene paleoenvironmental history of bioluminiscent Laguna Grande, Puerto Rico. Palaeogeogr Palaeoclimatol Palaeoecol 369:99–113

    Article  Google Scholar 

  • LeBlanc AR, Kennedy LM, Liu K-B et al (2017) Linking hurricane landfalls, precipitation variability, fires, and vegetation response over the past millennium from analysis of coastal lagoon sediments, southwestern Dominican Republic. J Paleolimnol 58:135–150

    Article  Google Scholar 

  • Li X, Duke NC, Yang Y et al (2016) Re-evaluation of phylogenetic relationships among species of the mangrove genus Avicennia from Indo-West Pacific based on multilocus analyses. PLoS One 11:e0164453

    Article  PubMed  PubMed Central  Google Scholar 

  • Lo EYY, Duke NC, Sun M (2014) Phylogeographic pattern of Rhizophora (Rhizophoraceae) reveals the importance of both vicariance and long-distance oceanic dispersal to modern mangrove distribution. BMC Evol Biol 14:83

    Article  PubMed  PubMed Central  Google Scholar 

  • Lonard RI, Judd FW, Summy KR et al (2017) The biological flora of coastal dunes and wetlands: Avicennia germinans (L.) L. J Coast Res 33:191–207

    Article  Google Scholar 

  • Lonard RI, Judd FW, DeYoe H et al (2020a) Biology and ecology of the halophyte Laguncularia racemosa (L.) Gaertn. f.: a review. In: Grigore M-N (ed) Handbook of halophytes. Cham, Springer Nature, pp 1–6

    Google Scholar 

  • Lonard RI, Judd FW, DeYoe H et al (2020b) Biology of the mangal halophyte Conocarpus erectus L.: a review. In: Grigore MN (ed) Handbook of halophytes. Cham, Springer Nature, pp 1819–1831

    Google Scholar 

  • Lorente MA (1986) Palynology and palynofacies of the Upper Tertiary in Venezuela. Dissert Bot 99:1–222

    Google Scholar 

  • Lourteig A (1986) Revisión del género Crenea Aublet (Litráceas). Caldasia 15:121–142

    Google Scholar 

  • Lugo AE, Snedaker SC (1974) The ecology of mangroves. Ann Rev Ecol Syst 5:39–64

    Article  Google Scholar 

  • MacIntyre IG, Toscano MA, Lighty RG et al (2004) Holocene history of the mangrove islands of Twin Cays, Belize, Central America. Atoll Res Bull 510:1–16

    Google Scholar 

  • Magaña V, Amador JA, Medina S (1999) The midsummer drought over Mexico and Central America. J Clim 12:1577–1588

    Article  Google Scholar 

  • Martínez C, Goddard L, Kushnir Y et al (2019) Seasonal climatology and dynamical mechanisms of rainfall in the Caribbean. Clim Dyn 53:825–846

    Article  Google Scholar 

  • McCloskey TA, Liu K-B (2012) A sedimentary-based history of hurricane strikes on the southern Caribbean coast of Nicaragua. Quat Res 78:454–464

    Article  Google Scholar 

  • Medina E, Cuevas E, Popp M et al (1990) Soil salinity, sunexposure, and growth of Acrostichum aureum, the mangrove fern. Bot Gaz 151:41–49

    Article  Google Scholar 

  • Medina E, Fernandez W, Barbosa F (2015) Element uptake accumulation and resorption in leaves of mangrove species with different mechanisms of salt regulation. Web Ecol 15:3–13

    Article  Google Scholar 

  • Mitchell SF, Pickerill RK, Stemann TA (2001) The Port Moran Formation (Upper Pleistocene, Jamaica): high resolution sedimentology and paleoenvironmental analysis of a mixed carbonate clastic lagoonal succession. Sedim Geol 144:291–306

    Article  Google Scholar 

  • Mona (Climate Studies Group) (2020) The State of the Caribbean Climate. Univ West Indies and Caribbean Development Bank, Kingston

    Google Scholar 

  • Monacci NM, Meier-Grünhagen U, Finney BP et al (2009) Mangrove ecosystem changes during the Holocene at Spanish Lookout Cay, Belize. Palaeogeogr Palaeoclimatol Palaeoecol 280:37–46

    Article  Google Scholar 

  • Monacci NM, Meier-Grünhagen U, Finney BP et al (2011) Paleoecology of mangroves along the Sibun River, Belize. Quat Res 76:220–228

    Article  CAS  Google Scholar 

  • Montaño PC, Nova G, Bayona G et al (2016) Análisis de secuencias y procedencia en sucesiones sedimentarias de grano fino: un ejemplo de la Formación Umir y base de la Formación Lisama, en el sector de Simacota (Santander, Colombia). Bol Geol 38:51–72

    Article  Google Scholar 

  • Montoya E, Pedra-Méndez J, García-Falcó E et al (2019) Long-term vegetation dynamics of a tropical megadelta: mid-Holocene palaeoecology of the Orinoco Delta (NE Venezuela). Quat Sci Rev 221:105874

    Article  Google Scholar 

  • Morley RJ (2000) Origin and evolution of tropical rain forests. Wiley, Chichester

    Google Scholar 

  • Muller J (1959) Palynology of recent Orinoco delta and shelf sediments. Micropaleontology 5:1–32

    Article  Google Scholar 

  • Muller J (1981) Fossil pollen records of extant angiosperms. Bot Rev 47:1–140

    Article  Google Scholar 

  • Muller J, Di Giacomo E, Van Erve AW (1987) A palynological zonation for the cretaceous, tertiary and quaternary of northern South America. Am Assoc Strat Palynol Contr Ser 19:7–76

    Google Scholar 

  • Neff H, Pearsall DM, Jones JG et al (2006) Early Maya adaptive patterns: Mid-Late Holocene paleoenvironmental evidence from Pacific Guatemala. Latin Am Antiq 17:287–315

    Article  Google Scholar 

  • Ochoa D, Hoorn C, Jaramillo C et al (2012) The final phase of tropical lowland conditions in the axial zone of the Eastern Cordillera of Colombia: evidence from three palynological records. J S Am Earth Sci 39:157–169

    Article  Google Scholar 

  • Palanisamy H, Becker M, Meyssignac B et al (2012) Regional sea level change and variability in the Caribbean Sea since 1950. J Geodet Sci 2:125–133

    Article  Google Scholar 

  • Palmer SE, Burn MJ, Holmes J (2020) A multiproxy analysis of extreme wave deposits in a tropical coastal lagoon in Jamaica, West Indies. Nat Hazards 104:2531–2560

    Article  Google Scholar 

  • Palmieri S, Teodonio L, Siani A-M et al (2006) Tropical storm impact in Central America. Meteorol Appl 13:21–28

    Article  Google Scholar 

  • Peros MC, Reinhardt EG, Schwarcz HP et al (2007) High-resolution paleosalinity reconstruction from Laguna de la Leche, north coastal Cuba, using Sr, O, and C isotopes. Palaeogeogr Palaeoclimatol Palaeoecol 245:535–550

    Article  Google Scholar 

  • Peros M, Gregory B, Matos F et al (2015) Late-Holocene record of lagoon evolution, climate change, and hurricane activity from southeastern Cuba. The Holocene 25:1483–1497

    Article  Google Scholar 

  • Perrette M, Launderer F, Riva R et al (2013) Scaling approach to project regional sea level rise and its uncertainties. Earth Syst Dynam 4:11–29

    Article  Google Scholar 

  • Phillips S, Rouse GE, Bustin RM (1997) Vegetation zones and diagnostic pollen profiles of a coastal peat swamp, Bocas de Toro, Panama. Palaeogeogr Palaeoclimatol Palaeoecol 128:301–338

    Article  Google Scholar 

  • Pielke RA, Rubiera J, Landsea C et al (2003) Hurricane vulnerability in Latin America and The Caribbean: normalized damage and loss potentials. Nat Hazards Rev 4:101–114

    Article  Google Scholar 

  • Pocknall DT, Erlich RN (2020) Palynostratigraphy and lithostratigraphy of Upper Cretaceous and Paleogene outcrop sections, Mérida Andes (Maracaibo Basin), Western Venezuela. J S Am Earth Sci 104:102830

    Article  Google Scholar 

  • Pocknall DT, Wood LJ, Geen AF et al (2001) Integrated paleontological studies of Pliocene to Pleistocene deposits of the Orinoco Delta, Eastern Venezuela and Trinidad. In: Goodman DK, Clarke RT (eds) Proc IX Int Palynol Cong. Am Assoc Strat Palynol Found, Houston, Texas, pp 319–326

    Google Scholar 

  • Pocknall DT, Clowes CD, Jarzen DM (2022) Spinizonocolpites prominatus (McIntyre) Stover & Evans: fossil Nypa pollen, taxonomy, morphology, global distribution, and paleoenvironmental significance. N Zealand J Geol Geophys 66:558–570

    Article  Google Scholar 

  • Rabinowitz D (1978) Early growth of mangrove seedlings in Panama and a hypothesis concernign the relationship of dispersal and zonation. J Biogeogr 5:113–133

    Article  Google Scholar 

  • Rahmstorf S (2007) A semi-empirical approach to projecting future sea level rise. Science 315:368–370

    Article  CAS  PubMed  Google Scholar 

  • Ramcharan EK (2004) Mid-to-Late Holocene sea level influence on coastal wetland development in Trinidad. Quat Int 120:145–151

    Article  Google Scholar 

  • Ramcharan EK, McAndrews JH (2006) Holocene development of coastal wetland at Maracas Bay, Trinidad, West Indies. J Coast Res 22:581–586

    Article  Google Scholar 

  • Righetti VH, Ferreira CB, Gonçalves-Esteves V (2014) Pollen morphology of selected species of the subfamily Bombacoidae (Malvaceae sensu lato). Acta Bot Brasil 28:352–360

    Article  Google Scholar 

  • Rodgers JC, Horn SP (1996) Modern pollen spectra from Costa Rica. Palaeogeogr Palaeoclimatol, Palaeoecol 124:53–71

    Article  Google Scholar 

  • Rodríguez-Forero G, Oboh-Ikuenobe FE, Jaramillo C et al (2012) Palynology of the Eocene esmeraldas Formation, Middle Magdalena Valley Basin, Colombia. Palynology 36:96–111

    Article  Google Scholar 

  • Rull V (1992) Paleoecología y análisis secuencial de una sección deltaica terciaria de la cuenca de Maracaibo. Bol Soc Venez Geol 46:16–26

    Google Scholar 

  • Rull V (1997a) Oligo-Miocene palynology of the Rio Chama sequence (western Venezuela), with comments on fossil algae as paleoenvironemntal indicators. Palynology 21:213–229

    Article  Google Scholar 

  • Rull V (1997b) Sequence analysis of western Venezuelan Cretaceous to Eocene sediments using palynology: chrono-paleoenvironmental and paleovegetational approaches. Palyology 21:79–90

    Article  Google Scholar 

  • Rull V (1998) Middle Eocene mangroves and vegetation changes in the Maracaibo basin, Venezuela. PALAIOS 13:287–296

    Article  Google Scholar 

  • Rull V (2001) A quantitative palynological record from the Early Miocene of western Venezuela, with emphasis on mangroves. Palynology 25:109–126

    Article  Google Scholar 

  • Rull V (2003) Contribution of quantitative ecological methods to the interpretation of stratigraphically homogeneous pre-Quaternary sequences: a palynological example from the Oligocene of Venezuela. Palynology 27:75–98

    Google Scholar 

  • Rull V (2020) Quaternary ecology, evolution and biogeography. Elsevier/Academic Press, London

    Google Scholar 

  • Rull V (2022) The Caribbean mangroves: an Eocene innovation with no Cretaceous precursors. Earth-Sci Rev 231:104070

    Article  Google Scholar 

  • Rull V (2023a) Taxon cycles in Neotropical mangroves. Plan Theory 12:244

    Google Scholar 

  • Rull V (2023b) Rise and fall of Caribbean mangroves. Sci Total Environ 885:163851

    Article  CAS  PubMed  Google Scholar 

  • Rull V (2023c) CARMA-F. Mendeley Data v3. https://doi.org/10.17632/zx8zvk3pw2.3

  • Rull V, Poumot C (1997) Eocene to Miocene palynocycles from western Venezuela and correlations with global eustatic cycles. Mem VII Cong Geol Venez II:343–349

    Google Scholar 

  • Rull V, Vegas-Vilarrúbia T (1999) Surface palynology of a small coastal basin from Venezuela and potential paleoecological applications. Micropaleontology 45:365–393

    Article  Google Scholar 

  • Rull V, Vegas-Vilarrúbia T, Espinoza N (1999) Palynological record of an Early-Mid Holocene mangrove in eastern Venezuela. Implications for sea-level rise and disturbance history. J Coast Res 15:496–504

    Google Scholar 

  • Santos CE (2012) Palynostratigraphy of the Umir Formation, Middle Magdalena Valley Basin (MMVB), Colombia. MS diss, Louisiana State Univ

    Google Scholar 

  • Smith TJ (1992) Forest structure. In: Robertson AI, Alongi DM (eds) Tropical Mangrove ecosystems. Am Geophys Union, Washington, pp 101–136

    Chapter  Google Scholar 

  • Sousa WP, Kennedy PG, Mitchell BI et al (2007) Supply-side ecology in mangroves: do propagule dispersal and seedling establishment explain forest structure? Ecol Monogr 77:53–76

    Article  Google Scholar 

  • Stennett-Brown RK, Jones JJ et al (2017) Future Caribbean temperature and rainfall extremes from statistical downscaling. Int J Climatol 37:4828–4845

    Article  Google Scholar 

  • Taylor MA, Alfaro EJ (2005) Climate of Central America and the Caribbean. In: Oliver JE (ed) Encyclopedia of world climates. Springer, Dordrecht, pp 183–189

    Chapter  Google Scholar 

  • Taylor MA, Clarke LA, Centella A et al (2018) Future Caribbean climates in a world of rising temperatures: the 1.5 vs 2.0 dilemma. J Clim 31:2907–2926

    Article  Google Scholar 

  • Tomlinson PB (2016) The botany of Mangroves. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Torres RR, Tsimplis MN (2013) Sea-level trends and interannual variability in the Caribbean Sea. J Geophys Res 118:2934–2947

    Article  Google Scholar 

  • Torrescano N, Islebe GA (2006) Tropical forest and mangrove history from southeastern Mexico: a 5000 yr pollen record and implications for sea level rise. Veg Hist Archaeobotany 15:191–195

    Article  Google Scholar 

  • Traverse A (2007) Paleopalynology. Springer, Dordrecht

    Book  Google Scholar 

  • Tschudy RH (1969) Relationship of palynomorphs to sedimentation. In: Tschudy RH, Scott RA (eds) Aspects of palynology. Wiley Interscience, New York, pp 79–96

    Google Scholar 

  • Urrego LE, Bernal G, Polanía J (2009) Comparison of pollen distribution patterns in surface sediments of a Colombian Caribbean mangrove with geomorphology and vegetation. Rev Palaeobot Palynol 156:358–375

    Article  Google Scholar 

  • Urrego LE, González C, Urán G et al (2010) Modern pollen rain in mangroves from San Andrés Island, Colombian Caribbean. Rev Palaeobot Palynol 162:168–182

    Article  Google Scholar 

  • Urrego LE, Correa-Metrio A, González C et al (2013) Contrasting responses of two Caribbean mangroves to sea-level rise in the Guajira Peninsula (Colombian Caribbean). Palaeogeogr Palaeoclimatol Palaeoecol 370:92–102

    Article  Google Scholar 

  • Urrego LE, Correa-Metrio A, González-Arango C (2018) Colombian Caribbean mangrove dynamics: anthropogenic and environmental drivers. Bol Soc Geol Mex 70:133–145

    Article  Google Scholar 

  • Urrego LE, Prado MA, Bernal G et al (2019) Mangrove responses to droughts since the little ice age in the Colombian Caribbean. Est Coast Shelf Res 230:196432

    Google Scholar 

  • Van der Hammen TA (1963) palynological study on the Quaternary of British Guiana. Leidse Geol Mededel 29:125–168

    Google Scholar 

  • Van der Hammen T, Wijmstra TA (1964) A palynological study on the tertiary and upper cretaceous of British Guiana. Leidse Geol Mededel 30:183–241

    Google Scholar 

  • Webster PJ, Holland GJ, Curry JA et al (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309:1844–1846

    Article  CAS  PubMed  Google Scholar 

  • Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36:519–539

    Article  Google Scholar 

  • Wiens JJ, Ackerly DD, Allen AP et al (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 13:1310–1324

    Article  PubMed  Google Scholar 

  • Wijmstra TA (1968) The identity of Psilatricolporites and Pelliciera. Acta Bot Neerl 17:114–116

    Article  Google Scholar 

  • Wijmstra TA (1969) Palynology of the Alliance Well. Geol Mijn 48:125–133

    Google Scholar 

  • Woodroffe CD (1982) Mangrove swamp stratigraphy and Holocene transgression, Grand Cayman Island, West Indies. Mar Geol 41:271–294

    Article  Google Scholar 

  • Wooler MJ, Behling H, Leon J et al (2009) Late Holocene hydrologic and vegetation changes at Turneffe Atoll, Belize, compared with records from mainland Central America and Mexico. PALAIOS 24:650–656

    Article  Google Scholar 

  • Yepes J, Poveda G, Mejía JF et al (2019) CHOCO-JEX a research experiment focused on the Chocó low-level jet over the far eastern Pacific and western Colombia. Bull Am Meteorol Soc 100:779–796

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix 1

Appendix 1

Accompanying species—other than true and associated elements, which are listed in Table 2.2—identified in Neotropical mangroves (García-Fuentes et al. 2020). Nomenclature according to the International Plant Names Index (IPNI) (https://www.ipni.org/)

Family

Species

Plant type

Aizoaceae

Sesuvium maritimum Britton, Sterns & Poggenb.

Herb

Sesuvium portulacastrum L.

Herb

Amaranthaceae

Heterostachys ritteriana Ung.-Sternb.

Shrub

Salicornia bigelovii Torr.

Herb

Salicornia ambigua Michx.

Herb

Sarcocornia pacifica (Standl.) A.J.Scott

Herb

Suaeda linearis (Elliot) Moq.

Herb

Annonaceae

Annona glabra L.

Tree

Klarobelia anomala (R.E.Fr.) Chatrou

Tree

Apocynaceae

Blepharodon mucronatus Decne.

Vine

Clathrotropis macrocarpa Ducke

Tree

Mesechites trifidus Müll.Arg.

Vine

Sarcostemma clausum (Jacq.) Schult.

Vine

Sarcostemma glaucum Kunth

Vine

Araceae

Montrichardia linifera Schott

Tree/Shrub

Arecaceae

Bactris guineensis (L.) H.E.Moore

Palm

Coccothrinax litoralis León

Palm

Roystonea borinquena O.F.Cook

Palm

Roystonea regia O.F.Cook

Palm

Sabal causiarum Becc.

Palm

Sabal palmetto (Walter) Lodd. ex Schult. & Schult.f.

Palm

Asteraceae

Ambrosia hispida Pursch

Herb

Baccharis halimifolia L.

Shrub

Borrichia arborescens (L.) DC

Tree/Shrub

Eclipta prostrata (L.) L.

Herb

Iva cheiranthifolia Kunth

Herb

Spilanthes urens Jacq.

Shrub/Herb

Wedelia fruticosa Jacq.

Herb

Bignoniaceae

Bignonia hyacinthina (Standl.) L.G.Lohmann

Vine

Crescentia cujete L.

Tree

Tabebuia angustata Britton

Tree

Tabebuia rosea (Bertol.) DC.

Tree

Bromeliaceae

Hohenbergia penduliflora Mez

Epiphyte

Tillandsia fasciculata Sw.

Epiphyte

Tillandsia flexuosa Mez

Epiphyte

Tillandsia recurvata (L.) L.

Epiphyte

Tillandsia usneoides (L.) L.

Epiphyte

Tillandsia variabilis Schltdl.

Epiphyte

Cactaceae

Harrisia eriophora (Pfeiff.) Britton

Cactus

Opuntia dillenii Haw.

Cactus

Pilosocereus royenii (L.) Byles & G.D.Rowley

Cactus

Selenicereus grandiflorus (L.) Britton & Rose

Cactus

Capparaceae

Crateva tapia Burm.f.

Tree

Quadrella odoratissima (Jacq.) Hutch.

Tree/Shrub

Combretaceae

Bucida buceras Vell.

Tree

Bucida palustris Borhidi & O.Muñiz

Tree

Terminalia catappa L.

Tree

Convolvulaceae

Evolvulus convolvuloides (Willd.) Stearn

Herb

Ipomoea tiliacea Choisy

Vine

Ipomoea triloba L.

Vine

Cucurbitaceae

Cucumis melo L.

Herb

Melothria pendula L.

Herb

Cyperaceae

Cladium mariscus R.Br.

Herb

Cyperus alternifolius L.

Herb

Eleocharis cellulosa Torr.

Herb

Eleocharis interstincta R.Br.

Herb

Eleocharis mutata (L.) Roem. & Schult.

Herb

Fimbristylis cymosa R.Br.

Herb

Fimbristylis spadicea (L.) Vahl.

Herb

Kyllinga odorata Liebm.

Herb

Schoenoplectus americanus (Pers.) Volkart ex Schniz & R.Keller

Herb

Fabaceae

Acacia macracantha Humb. & Bonpl. ex Willd.

Tree

Albizia saman (Jacq.) F.Muell.

Tree

Dalbergia berteroi Urb.

Shrub

Dalbergia brownei (Jacq.) Urb.

Vine

Desmanthus virgatus (L.) Willd.

Shrub/Herb

Erythrina fusca Lour.

Tree

Gliricidia sepium Kunth

Tree

Inga alba (Sw.) Willd

Tree

Lonchocarpus pycnophyllus Urb.

Shrub

Lonchocarpus sericeus (Poir.) Kunth ex DC.

Tree

Machaerium lunatum Ducke

Tree/Shrub

Mimosa pigra L.

Tree

Pithecellobium mucronatum Britton in Shattuck

Tree/Shrub

Prioria copaifera Griseb.

Tree

Pterocarpus acapulcensis Rose

Tree

Pterocarpus officinalis Jacq.

Tree

Stahlia monosperma Urb.

Tree

Heliotropiaceae

Heliotropium curassavicum L.

Herb

Malvaceae

Bastardia viscosa (L.) Kunth

Shrub

Cienfuegosia yucatanensis Millsp.

Herb

Moraceae

Ficus bullenei I.M.Johnst.

Tree

Ficus dendrocida Kunth

Tree

Maclura tinctoria (L.) D.Don ex Steud.

Tree

Nephrolepidaceae

Nephrolepis multiflora (Roxb.) F.M.Jarrett ex C.V.Morton

Fern

Onagraceae

Ludwigia octovalvis (Jacq.) P.H.Raven

Herb

Orchidaceae

Broughtonia lindenii (Lindl.) Dressler

Epiphyte

Phyllanthaceae

Phyllanthus elsiae Urb.

Tree

Poaceae

Chloris barbata Sw.

Herb

Chloris elata Desv.

Herb

Distichlis spicata (L.) Greene

Herb

Echinochloa polystachya (Kunth) Hitchc.

Herb

Monanthochloe littoralis Engelm.

Herb

Paspalum distachyon Willd. ex Döll.

Herb

Phragmites australis (Cav.) Steud.

Reed

Sporobolus pyramidatus (Lam.) Hitchc.

Herb

Sporobolus virginicus (L.) Kunth

Herb

Polygonaceae

Coccoloba uvifera (L.) L.

Tree

Persicaria acuminata (Kunth) M.Gómez

Herb

Pontederiaceae

Eichhornia crassipes (Mart.) Solms

Floating

Primulaceae

Jacquinia keyensis Mez

Shrub

Rubiaceae

Casasia clusiifolia Urb.

Tree/Shrub

Erithalis fruticosa L.

Shrub

Ernodea littoralis Sw.

Herb

Morinda citrifolia L.

Tree

Rachicallis americana Kuntze

Shrub

Strumpfia maritima Jacq.

Shrub

Rutaceae

Helietta plaeana Tul.

Tree/Shrub

Salicaceae

Casearia aculeata Jacq.

Tree

Santalaceae

Phoradendron quadrangulare (Kunth) Griseb.

Shrub

Sapindaceae

Paullinia fuscescens Kunth

Vine

Solanaceae

Lycium carolinianum Walter

Shrub

Lycium tweedianum Griseb.

Shrub

Solanum jamaicense Mill.

Shrub

Surianaceae

Suriana maritima L.

Shrub

Typhaceae

Typha domingensis Pers.

Herb

Verbenaceae

Lantana involucrata L.

Shrub

Vitaceae

Cissus trifoliata Lour.

Vine

Cissus verticillata (L.) Nicolson & C.E.Jarvis

Vine

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rull, V. (2024). The Caribbean Mangroves Today. In: Origin and Evolution of Caribbean Mangroves. Ecological Studies, vol 252. Springer, Cham. https://doi.org/10.1007/978-3-031-57612-6_2

Download citation

Publish with us

Policies and ethics