Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 252))

  • 26 Accesses

Abstract

Mangroves possess both intrinsic, ecological, and practical value. Initially, these coastal mangrove forests, situated in the intertidal zone, play a crucial role in safeguarding and sustaining the diversity and ecological dynamics of tropical/subtropical coastal ecosystems. Additionally, they offer a wide array of ecological and cultural services to human societies. Moreover, by sequestering carbon in their organic-rich sediments, mangroves stand out as the foremost blue-carbon ecosystems, contributing to the global warming mitigation. Despite their significance, mangroves face severe threats, ranking among the world’s most endangered ecosystems. Sustaining current deforestation rates poses a substantial risk to their long-term survival. Consequently, this predicament has spurred the initiation of numerous global initiatives aimed at conserving and restoring mangroves, necessitating a foundation of robust ecological and evolutionary knowledge. This book is focused on mangroves from the Neotropical Caribbean region and aims to provide a comprehensive ecological and evolutionary view of these ecosystems, from their evolutionary origin to their current patterns. The main environmental drivers of mangrove ecology and evolution are also analyzed, with emphasis on plate tectonics and continental drift, climatic and sea-level shifts, and recent anthropogenic pressure. This is conducted using a time-continuum integrative approach aimed at circumventing the past–present dissociation and the associated methodological and conceptual drawbacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afonso F, Félix PM, Chainho P et al (2021) Assessing ecosystem services in mangroves: insights from São Tomé Island (Central Africa). Front Environ Sci 9:501673

    Article  Google Scholar 

  • Baker JR (1939) A counterblast to Bernalism. New Statesman Nat 18:174–175

    Google Scholar 

  • Bryant T (1893) Hunterian oration. Lancet 1:342

    Google Scholar 

  • Bunting P, Rosenqvist A, Hilarides L et al (2022) Global Mangrove Watch: updated 2010 mangrove forest extent (v2.5). Remote Sens 10:1669

    Article  Google Scholar 

  • Cohen KM, Finney SC, Gibbard PL et al (2013) The ICS international chronostratigraphic chart. Episodes 36:199–204. (version 2020/10; regularly updated at www.stratigraphy.org/ICSChart/)

    Article  Google Scholar 

  • Duke NC, Meyneccke J-O, Dittman S et al (2017) A world without mangroves? Science 317:41b–42b

    Article  Google Scholar 

  • Ellison JC (2008) Long-term retrospection on mangrove development using sediment cores and pollen analysis: a review. Aquat Bot 89:93–104

    Article  Google Scholar 

  • Ellison AM, Farnsworth EJ, Merkt RE (1999) Origins of mangrove ecosystems and the marine biodiversity anomaly. Glob Ecol Biogeogr 8:95–115

    Article  Google Scholar 

  • Fest BJ, Swearer SE, Arndy SK (2022) A review of sediment carbon sampling methods in mangroves and their broader impacts on stock estimates for blue carbon ecosystems. Sci Total Environ 816:151618

    Article  CAS  PubMed  Google Scholar 

  • Graham A (1995) Diversification of Gulf/Caribbean mangrove communities through Cenozoic time. Biotropica 27:20–27

    Article  Google Scholar 

  • Huber O (1986) La Selva Nublada de Rancho Grande, Parque Natural Henri Pittier. Editorial Arte, Caracas

    Google Scholar 

  • Huber O (1987) Neotropical savannas: their flora and vegetation. Trends Ecol Evol 2:67–71

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson GE (1965) The ecological theater and the evolutionary play. Yale University Press, New Haven

    Google Scholar 

  • Jackson JB (2001) Integrating ecological dynamics across time-scales, realtime, Q-time and deep time. PALAIOS 16:1–2

    Article  Google Scholar 

  • Lacerda LD, Conde JE, Kjerve B et al (2002) American mangroves. In: Lacerda LD (ed) Mangrove ecosystems. Springer, Berlin, pp 1–62

    Chapter  Google Scholar 

  • Lacerda LD, Borges R, Ferreira AC (2019) Neotropical mangroves: conservation and sustainable use in a scenario of global climatic change. Aquat Conserv 29:1347–1364

    Article  Google Scholar 

  • Laegdsgaard P, Johnson C (2001) Why do juvenile fish utilize mangrove habitats. J Exp Mar Biol Ecol 257:229–253

    Article  CAS  PubMed  Google Scholar 

  • Lester SE, Dubel AK, Hernán G et al (2020) Spatial planning principles for marine cosystem restoration. Front Mar Sci 7:328

    Article  Google Scholar 

  • Lomolino MV, Riddle BR, Brown JH et al (2010) Biogeography. Sinauer, Sunderland

    Google Scholar 

  • López-Angarita J, Roberts CM, Tilley A et al (2016) Mangroves and people: lessons from a history of use and abuse in four Latin American countries. Forest Ecol Manag 368:1151–1162

    Article  Google Scholar 

  • Lugo AE, Snedaker SC (1974) The ecology of mangroves. Ann Rev Ecol Syst 5:39–64

    Article  Google Scholar 

  • Luteyn JL (1999) Páramos: a checklist of plant diversity, geographical distribution, and botanical literature. The New York Botanical Garden Press, New York

    Google Scholar 

  • Lyell C (1850) Principles of geology. John Murray, London

    Google Scholar 

  • MacLeod N (2015) The great extinctions: what causes them and how they shape life. Firefly, Richmond Hill

    Google Scholar 

  • MacNae W (1968) A general account of the fauna and flora of mangrove swamps and forests in the Indonesian West Pacific. Adv Mar Biol 6:73–270

    Article  Google Scholar 

  • Makowski C, Finkl CW (2018) Threats to Mangrove forests. Hazards, vulnerability, and management. Springer Nature, Cham

    Book  Google Scholar 

  • McCoy ED, Heck KL (1976) Biogeography of corals, seagrasses, and mangroves: an alternative to the center of origin concept. Syst Zool 25:201–210

    Article  Google Scholar 

  • McGlone MS (1996) When history matters: scale, time, climate and tree diversity. Glob Ecol Biogeogr 5:309–314

    Article  Google Scholar 

  • Mcleod E, Chmura GL, Bouillon S et al (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9:552–560

    Article  Google Scholar 

  • Miller KG, Browning JV, Schmelz WJ et al (2020) Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Sci Adv 6:aaz1346

    Article  Google Scholar 

  • Mishra AK, Farooq SH (2022) Lack of ecological data hinders management of ecologically important saltmarsh ecosystems: a case study of saltmarsh plant Porterasia coarctata (Roxb.). J Environ Manag 321:115957

    Article  Google Scholar 

  • Monasterio M (1980) Estudios Ecológicos en los Páramos Andinos. Univ Los Andes, Mérida

    Google Scholar 

  • Nagelkerken I, Blaver SJN, Bouillon S et al (2008) The habitat function of mangroves for terrestrial and marine fauna: a review. Aquat Bot 89:155–185

    Article  Google Scholar 

  • Nellemann C, Corcoran E, Duarte C et al (2009) Blue carbon. A rapid response assessment. UNEP, GRID-Arendal

    Google Scholar 

  • O’Brien MJ (2019) Setting the stage: the Late Pleistocene colonization of North America. Quaternary 2:1

    Article  Google Scholar 

  • Plaziat J-C, Cavagnetto C, Koeniguer J-C et al (2001) History and biogeography of the mangrove ecosystem, based on a critical reassessment of the paleontological record. Wetl Ecol Manag 9:161–179

    Article  Google Scholar 

  • Pontarp M, Bnnefeld L, Cabral JS et al (2019) The latitudinal diversity gradient: novel understanding through mechanistic eco-evolutionary models. Trends Ecol Evol 34:211–223

    Article  PubMed  Google Scholar 

  • Raby M (2017) The colonial origin of tropical field stations. Am Sci 105:216–223

    Article  Google Scholar 

  • Richards DR, Thompson BS, Wijedasa L (2020) Quatifying net loss of mangrove carbon stocks from 20 years of land cover change. Nat Commun 11:4260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romano M (2015) Reviewing the term uniformitarianism in modern Earth Sciences. Earth-Sci Rev 148:65–76

    Article  Google Scholar 

  • Rudwick MJS (1997) Geoges cuvier, fossil bones, and geological catastrophes. University Chicago Press, Chicago

    Book  Google Scholar 

  • Rull V (1997a) Oligo-Miocene palynology of the Rio Chama sequence (western Venezuela), with comments on fossil algae as paleoenvironemntal indicators. Palynology 21:213–229

    Article  Google Scholar 

  • Rull V (1997b) Sequence analysis of western Venezuelan Cretaceous to Eocene sediments using palynology: chrono-paleoenvironmental and paleovegetational approaches. Palyology 21:79–90

    Article  Google Scholar 

  • Rull V (1998a) Biogeographical and evolutionary considerations on Mauritia (Arecaceae), based on palynological evidence. Rev Palaeobot Palynol 100:109–122

    Article  Google Scholar 

  • Rull V (1998b) Middle Eocene mangroves and vegetation changes in the Maracaibo basin, Venezuela. PALAIOS 13:287–296

    Article  Google Scholar 

  • Rull V (1998c) Evolución de los manglares neotropicales: la crisis del Eoceno. Interciencia 23:355–362

    Google Scholar 

  • Rull V (1999) Palaeofloristic and palaeovegetational changes across the Paleocene/Eocene boundary in northern South America. Rev Palaeobot Palynol 107:83–95

    Article  Google Scholar 

  • Rull V (2000a) Holocene sea level rise in Venezuela: a preliminary curve. Bol Soc Ven Geol 25:32–36

    Google Scholar 

  • Rull V (2000b) Ecostratigraphic study of Paleocene and Early Eocene palynological cyclicity in northern South America. PALAIOS 15:14–14

    Article  Google Scholar 

  • Rull V (2001) A quantitative palynological record from the Early Miocene of western Venezuela, with emphasis on mangroves. Palynology 25:109–126

    Article  Google Scholar 

  • Rull V (2003) Contribution of quantitative ecological methods to the interpretation of stratigraphically homogeneous pre-Quaternary sequences: a palynological example from the Oligocene of Venezuela. Palynology 27:75–98

    Google Scholar 

  • Rull V (2010) Ecology and palaeoecology: two approaches, one objective. Open Ecol J 3:1–5

    Article  Google Scholar 

  • Rull V (2012) Time, evolution and physical reductionism. EMBO Rep 13:181–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rull V (2014) The most important application of science. EMBO Rep 15:919–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rull V (2016) Free science under threat EMBO rep 17:131–135

    CAS  PubMed  Google Scholar 

  • Rull V (2020) Neotropical diversification: historical overview and conceptual insights. In: Rull V, Carnaval A (eds) Neotropical diversification: patterns and porcesses. Springer Nature, Cham, pp 13–49

    Chapter  Google Scholar 

  • Rull V (2022a) The Caribbean mangroves: an Eocene innovation with no Cretaceous precursors. Earth-Sci Rev 231:104070

    Article  Google Scholar 

  • Rull V (2022b) Responses of Caribbean mangroves to Quaternary climatic, eustatic and anthropogenic drivers of ecological change: a review. Plan Theory 11:3502

    Google Scholar 

  • Rull V (2022c) Eocene/Oligocene global disruption and the revolution of Caribbean mangroves. Persp Plant Ecol Evol Syst 59:125733

    Article  Google Scholar 

  • Rull V (2023a) Taxon cycles in Neotropical mangroves. Plan Theory 12:244

    Google Scholar 

  • Rull V (2023b) The Neogene-Quaternary diversification trend in the shaping of modern Caribbean mangroves. Quat Sci Rev 300:107920

    Article  Google Scholar 

  • Rull V (2023c) Rise and fall of Caribbean mangroves. Sci Total Environ 885:163851

    Article  CAS  PubMed  Google Scholar 

  • Rull V, Carnaval A (2020) Neotropical diversification: patterns and processes. Springer Nature, Cham

    Book  Google Scholar 

  • Rull V, Montoya E (2014) Mauritia flexuosa palm swamp communities: natural or human-made? A palynological study of the Gran Sabana region (northern South America) within a Neotropical context. Quat Sci Rev 99:17–33

    Article  Google Scholar 

  • Rull V, Vegas-Vilarrúbia T (1999) Surface palynology of a small coastal basin from Venezuela and potential paleoecological applications. Micropaleontology 45:365–393

    Article  Google Scholar 

  • Rull V, Vegas-Vilarrúbia T (2020) The Pantepui “Lost World”: towards a biogeographical, ecological and evolutiorany synthesis of a pristine Neotropical sky-island archipelago. In: Rull V, Carnaval A (eds) Neotropical diversification: patterns and porcesses. Springer Nature, Cham, pp 369–413

    Chapter  Google Scholar 

  • Rull V, Vegas-Vilarrúbia T, Espinoza N (1999) Palynological record of an Early-Mid Holocene mangrove in eastern Venezuela. Implications for sea-level rise and disturbance history. J Coast Res 15:496–504

    Google Scholar 

  • Rull V, Montoya E, Nogué S et al (2013) Ecological palaeoecology in the Neotropical Gran Sabana region: long-term records of vegetation dynamics as a basis for hypothesis testing. Persp Plant Ecol Evol Syst 15:338–359

    Article  Google Scholar 

  • Rull V, Montoya E, Vegas-Vilarrúbia T et al (2015) New insights on palaeofires and savannisation in northern South America. Quat Sci Rev 122:158–165

    Article  Google Scholar 

  • Rull V, Vegas-Vilarrúbia T, Huber O et al (2019) Biodiversity of Pantepui. The pristine “lost world” of the neotropical Guiana highlands. Academic Press/Elsevier, London

    Google Scholar 

  • Saenger P (2002) Mangrove ecology, silviculture and conservation. Kluwer, Dordrecht

    Book  Google Scholar 

  • Scotese CR, Wright N (2018) PALEOMAP Paleodigfital Elevation Models (PaleoDEMS) for the Phanerozoic. Zenodo, https://doi.org/10.5281/zenodo.5348492 (free downloads at Earthbyte; https://www.earthbyte.org/paleodem-resource-scotese-and-wright-2018/)

  • Soulé ME (1985) What is conservation biology? Bioscience 35:727–734

    Article  Google Scholar 

  • Spalding M, Kainuma M, Collins L (2010) World Atlas of Mangroves. Routledge, London

    Book  Google Scholar 

  • Srivastava J, Prasad V (2018) Evolution and paleobiogeography of mangroves. Mar Ecol 40:e12571

    Article  Google Scholar 

  • Steyermark JA, Huber O (1978) Flora del Avila. Soc Ven Cien Nat, Caracas

    Google Scholar 

  • Tewari V, Seckbach J (2011) Stromatolites: interactions of micorbes with sediments. Springer, Dordrecht

    Book  Google Scholar 

  • Tomlinson PB (2016) The botany of Mangroves. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Westerhold T, Marwan N, Drury AJ et al (2020) An astronomically dated record of earth’s climate and its predictability over the last 66 million years. Science 369:1383–1387

    Article  CAS  PubMed  Google Scholar 

  • Worthington TA, zu Ermgassen PSE, Fries DA et al (2020) A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation. Sci Rep 10:15652

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rull, V. (2024). Introduction. In: Origin and Evolution of Caribbean Mangroves. Ecological Studies, vol 252. Springer, Cham. https://doi.org/10.1007/978-3-031-57612-6_1

Download citation

Publish with us

Policies and ethics