Skip to main content

Using Reed-Muller Codes for Classification with Rejection and Recovery

  • Conference paper
  • First Online:
Foundations and Practice of Security (FPS 2023)

Abstract

When deploying classifiers in the real world, users expect them to respond to inputs appropriately. However, traditional classifiers are not equipped to handle inputs which lie far from the distribution they were trained on. Malicious actors can exploit this defect by making adversarial perturbations designed to cause the classifier to give an incorrect output. Classification-with-rejection methods attempt to solve this problem by allowing networks to refuse to classify an input in which they have low confidence. This works well for strongly adversarial examples, but also leads to the rejection of weakly perturbed images, which intuitively could be correctly classified. To address these issues, we propose Reed-Muller Aggregation Networks (RMAggNet), a classifier inspired by Reed-Muller error-correction codes which can correct and reject inputs. This paper shows that RMAggNet can minimise incorrectness while maintaining good correctness over multiple adversarial attacks at different perturbation budgets by leveraging the ability to correct errors in the classification process. This provides an alternative classification-with-rejection method which can reduce the amount of additional processing in situations where a small number of incorrect classifications are permissible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Code available at: https://github.com/dfenth/RMAggNet.

  2. 2.

    https://github.com/davidstutz/confidence-calibrated-adversarial-training.

References

  1. Chen, X., et al.: Symbolic discovery of optimization algorithms. arXiv:2302.06675 (2023)

  2. Tragakis, A., Kaul, C., Murray-Smith, R., Husmeier, D.: The fully convolutional transformer for medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3660–3669 (2023)

    Google Scholar 

  3. Pierazzi, F., Pendlebury, F., Cortellazzi, J., Cavallaro, L.: Intriguing properties of adversarial ml attacks in the problem space. In: 2020 IEEE Symposium on Security and Privacy (SP), 2020, pp. 1332–1349 (2020)

    Google Scholar 

  4. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv:1312.6199 (2013)

  5. Smith, L., Gal, Y.: Understanding measures of uncertainty for adversarial example detection. In: 34th Conference on Uncertainty in Artificial Intelligence 2018, UAI 2018, vol. 2, mar 2018, pp. 560–569 (2018)

    Google Scholar 

  6. Zou, A., Wang, Z., Kolter, J.Z., Fredrikson, M.: Universal and transferable adversarial attacks on aligned language models (2023)

    Google Scholar 

  7. Morris, J.X., Lifland, E., Yoo, J.Y., Grigsby, J., Jin, D., Qi, Y.: TextAttack: a framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 119–126 (2020)

    Google Scholar 

  8. Chen, S.-T., Cornelius, C., Martin, J., Chau, D.H.P.: ShapeShifter: robust physical adversarial attack on faster R-CNN object detector. In: Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., Ifrim, G. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11051, pp. 52–68. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10925-7_4

    Chapter  Google Scholar 

  9. Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A.: Distillation as a defense to adversarial perturbations against deep neural networks. In: 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 2016, pp. 582–597 (2016)

    Google Scholar 

  10. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv:1412.6572 (2014)

  11. Verma, G., Swami, A.: Error correcting output codes improve probability estimation and adversarial robustness of deep neural networks. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  12. Cortes, C., DeSalvo, G., Mohri, M.: Learning with rejection. In: Ortner, R., Simon, H.U., Zilles, S. (eds.) ALT 2016. LNCS (LNAI), vol. 9925, pp. 67–82. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46379-7_5

    Chapter  Google Scholar 

  13. Charoenphakdee, N., Cui, Z., Zhang, Y., Sugiyama, M. In: International Conference on Machine Learning, PMLR, 2021, pp. 1507–1517 (2021)

    Google Scholar 

  14. Song, Y., Kang, Q., Tay, W.P.: Error-correcting output codes with ensemble diversity for robust learning in neural networks. Proc. AAAI Conf. Artif. Intell. 35(11), 9722–9729 (2021)

    Google Scholar 

  15. Papernot, N., McDaniel, P., Goodfellow, I.: Transferability in machine learning: from phenomena to black-box attacks using adversarial samples. arXiv:1605.07277 (2016)

  16. Stutz, D., Hein, M., Schiele, B.: Confidence-calibrated adversarial training: generalizing to unseen attacks. In: Proceedings of the International Conference on Machine Learning ICML (2020)

    Google Scholar 

  17. Fentham, D., Parker, D., Ryan, M.: Using Reed-Muller codes for classification with rejection and recovery. arXiv:2309.06359 (2023)

  18. Gamal, A., Hemachandra, L., Shperling, I., Wei, V.: Using simulated annealing to design good codes. IEEE Trans. Inf. Theory 33(1), 116–123 (1987)

    Article  Google Scholar 

  19. Muller, D.E.: Application of boolean algebra to switching circuit design and to error detection. In: Transactions of the I.R.E. Professional Group on Electronic Computers, vol. EC-3, no. 3, pp. 6–12 (1954)

    Google Scholar 

  20. Reed, I.: A class of multiple-error-correcting codes and the decoding scheme. Trans. IRE Profess. Group Inform. Theory 4(4), 38–49 (1954)

    Article  MathSciNet  Google Scholar 

  21. Hamming, R.W.: Error detecting and error correcting codes. Bell System Tech. J. 29(2), 147–160 (1950)

    Article  MathSciNet  Google Scholar 

  22. Carlini, N., et al.: On evaluating adversarial robustness. arXiv:1902.06705 (2019)

  23. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv:1706.06083 (2017)

  24. Brendel, W., Rauber, J., Bethge, M.: Decision-based adversarial attacks: Reliable attacks against black-box machine learning models. In: International Conference on Learning Representations (2018)

    Google Scholar 

  25. Cohen, G., Afshar, S., Tapson, J., Van Schaik, A.: Emnist: extending mnist to handwritten letters. In: 2017 International Joint Conference on Neural Networks (IJCNN), IEEE, 2017, pp. 2921–2926 (2017)

    Google Scholar 

  26. Rauber, J., Zimmermann, R., Bethge, M., Brendel, W.: Foolbox native: fast adversarial attacks to benchmark the robustness of machine learning models in pytorch, tensorflow, and jax. Journal of Open Source Software, vol. 5, no. 53, p. 2607, 2020. https://doi.org/10.21105/joss.02607

  27. Rauber, J., Brendel, W., Bethge, M.: Foolbox: a python toolbox to benchmark the robustness of machine learning models. In: Reliable Machine Learning in the Wild Workshop, 34th International Conference on Machine Learning (2017)

    Google Scholar 

  28. Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples. In: International Conference on Machine Learning. PMLR, 2018, pp. 274–283 (2018)

    Google Scholar 

  29. Dong, Y., et al.: Boosting adversarial attacks with momentum. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 9185–9193 (2018)

    Google Scholar 

  30. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778 (2016)

    Google Scholar 

  31. Jeevan, P., Viswanathan, K., Sethi, A.: Wavemix-lite: a resource-efficient neural network for image analysis. arXiv:2205.14375 (2022)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Fentham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fentham, D., Parker, D., Ryan, M. (2024). Using Reed-Muller Codes for Classification with Rejection and Recovery. In: Mosbah, M., Sèdes, F., Tawbi, N., Ahmed, T., Boulahia-Cuppens, N., Garcia-Alfaro, J. (eds) Foundations and Practice of Security. FPS 2023. Lecture Notes in Computer Science, vol 14551. Springer, Cham. https://doi.org/10.1007/978-3-031-57537-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57537-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57536-5

  • Online ISBN: 978-3-031-57537-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics