Skip to main content

Edge Dismantling with Geometric Reinforcement Learning

  • Conference paper
  • First Online:
Complex Networks XV (CompleNet-Live 2024)

Abstract

The robustness of networks plays a crucial role in various applications. Network dismantling, the process of strategically removing nodes or edges to maximize damage, is a known NP-hard problem. While heuristics for node removal exist, edge network dismantling, especially in real-world scenarios like power grids or transportation networks, remains underexplored. This paper introduces eGDM-RL, a novel framework for edge dismantling based on Geometric Deep Learning and Reinforcement Learning. Unlike previous approaches, this method demonstrates superior performance in terms of the Area Under the dismantling Curve (AUC) with low computational complexity. The proposed model, utilizing a Graph Attention Network (GAT) and a Deep Q-value Network (DQN), outperforms traditional methods such as those based on edge betweenness. Experimental results on real-world networks validate the effectiveness of the proposed eGDM-RL framework, offering insights into critical edge removal for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    At the time we are writing this paper the code that implements the method described in [23] is not available, so it is impossible to compare it with our method.

References

  1. Crime network dataset – KONECT (2017). http://konect.cc/networks/moreno_crime

  2. Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex networks. Nature 406(6794), 378–382 (2000)

    Google Scholar 

  3. Artime, O., Grassia, M., De Domenico, M., Gleeson, J.P., Makse, H.A., Mangioni, G., Perc, M., Radicchi, F.: Robustness and resilience of complex networks. Nat. Rev. Phys. 1–18 (2024)

    Google Scholar 

  4. Braunstein, A., Dall’Asta, L., Semerjian, G., Zdeborová, L.: Network dismantling. Proc. Natl. Acad. Sci. 113(44), 12368–12373 (2016)

    Google Scholar 

  5. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017). https://doi.org/10.1109/MSP.2017.2693418

    Article  Google Scholar 

  6. Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M., Mangioni, G.: Efficient node pagerank improvement via link-building using geometric deep learning. ACM Trans. Knowl. Discov. Data 17(3), 1–22 (2023)

    Article  Google Scholar 

  7. Fan, C., Zeng, L., Sun, Y., Liu, Y.Y.: Finding key players in complex networks through deep reinforcement learning. Nat. Mach. Intell. 2(6), 317–324 (2020). https://doi.org/10.1038/s42256-020-0177-2

    Article  Google Scholar 

  8. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

    Google Scholar 

  9. Fujita, Y., Nagarajan, P., Kataoka, T., Ishikawa, T.: Chainerrl: A deep reinforcement learning library. J. Mach. Learn. Res. 22(77), 1–14 (2021). http://jmlr.org/papers/v22/20-376.html

  10. Grassia, M., De Domenico, M., Mangioni, G.: Machine learning dismantling and early-warning signals of disintegration in complex systems. Nat. Commun. 12(1), 5190 (2021)

    Google Scholar 

  11. Grassia, M., Mangioni, G.: wsGAT: weighted and signed graph attention networks for link prediction. In: Complex Networks & Their Applications X: Volume 1, Proceedings of the Tenth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2021 10, pp. 369–375. Springer (2022)

    Google Scholar 

  12. Grassia, M., Mangioni, G.: CoreGDM: geometric deep learning network decycling and dismantling. In: Teixeira, A.S., Botta, F., Mendes, J.F., Menezes, R., Mangioni, G. (eds.) Complex Networks XIV, pp. 86–94. Springer Nature Switzerland, Cham (2023)

    Chapter  Google Scholar 

  13. Hayes, B.: Connecting the dots. can the tools of graph theory and social-network studies unravel the next big plot? Am. Sci. 94(5), 400–404 (2006)

    Google Scholar 

  14. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M.: Playing atari with deep reinforcement learning (2013). https://doi.org/10.48550/ARXIV.1312.5602

  15. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Google Scholar 

  16. Morone, F., Makse, H.A.: Influence maximization in complex networks through optimal percolation. Nature 524(7563), 65 (2015)

    Article  Google Scholar 

  17. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford, New York (2010). http://www.amazon.com/Networks-An-Introduction-Mark-Newman/dp/0199206651/ref=sr_1_5?ie=UTF8&qid=1352896678&sr=8-5&keywords=complex+networks

  18. Peixoto, T.P.: The graph-tool python library. figshare (2014)

    Google Scholar 

  19. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: AAAI (2015). http://networkrepository.com

  20. Ulanowicz, R.E., Heymans, J.J., Egnotovich, M.S.: Network analysis of trophic dynamics in South Florida ecosystems, FY 99: The graminoid ecosystem. Annual Report to the United States Geological Service Biological Resources Division Ref. No.[UMCES] CBL 00-0176, Chesapeake Biological Laboratory, University of Maryland (2000)

    Google Scholar 

  21. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=rJXMpikCZ

  22. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(1), 440–442 (1998)

    Article  Google Scholar 

  23. Wu, L., Ren, X.L.: Optimal bond percolation in networks by a fast-decycling framework. In: Cherifi, H., Mantegna, R.N., Rocha, L.M., Cherifi, C., Micciche, S. (eds.) Complex Networks and Their Applications XI, pp. 509–519. Springer International Publishing, Cham (2023)

    Chapter  Google Scholar 

  24. Zdeborová, L., Zhang, P., Zhou, H.J.: Fast and simple decycling and dismantling of networks. Sci. Rep. 6(1) (2016). https://doi.org/10.1038/srep37954

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Mangioni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grassia, M., Mangioni, G. (2024). Edge Dismantling with Geometric Reinforcement Learning. In: Botta, F., Macedo, M., Barbosa, H., Menezes, R. (eds) Complex Networks XV. CompleNet-Live 2024. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-031-57515-0_15

Download citation

Publish with us

Policies and ethics