Abstract
Plastids are eukaryotic organelles that evolved from a photobiotic symbiont, imparting photosynthetic abilities to heterotrophic hosts. Plastids lose much of their complexity during the endosymbiont-to-organelle transition, reflecting the need of the symbiotic partners to synchronize reproduction and streamline metabolism. This is obvious from genome size reduction, and while the genomes of plastid predecessors, cyanobacteria, typically range 1.6–7.8 Mbp, most plastid genomes range 110–190 kbp. In some lineages, plastid genomes depart from convention, which manifests two-way. Whereas in rhodophytes, chlorophytes, plants, and euglenids this leads to the expansion of noncoding DNA, in dinoflagellates, the plastid genome is fragmented into single-gene minicircles, and in one chlorophyte lineage into linear single-stranded hairpin chromosomes. Yet, plastids may later enter the dark phase of their “life history.” Driven by competition, even established phototrophic organisms sometimes revert to heterotrophy or parasitism, leading to further impairment or complete loss of photosynthesis. Here, we recapitulate the history of plastids from early acquisition to their disappearance in nonphotosynthetic algae and plants. We compare how molecular functions encoded by plastids vary in diverse eukaryotic lineages that acquired them, and how they vary in lineages about to lose them. We highlight how genome reduction accompanies plastid life cycles and how evolutionary history shapes their ultimate future.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Flombaum P et al (2013) Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci U S A 110:9824–9829. https://doi.org/10.1073/pnas.1307701110
Rousseaux CS, Gregg WW (2014) Interannual variation in phytoplankton primary production at a global scale. Remote Sens (Basel) 6:1–19. https://doi.org/10.3390/rs6010001
Sánchez-Baracaldo P, Cardona T (2019) On the origin of oxygenic photosynthesis and cyanobacteria. New Phytol 225:1440–1446. https://doi.org/10.1111/nph.16249
Ponce-Toledo RI, Deschamps P, López-García P, Zivanovic Y, Benzerara K, Moreira D (2017) An early-branching freshwater cyanobacterium at the origin of plastids. Curr Biol 27:386–391. https://doi.org/10.1016/j.cub.2016.11.056
Parfrey LW, Lahr DJG, Knoll AH, Katz LA (2011) Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci U S A 108:13624–13629. https://doi.org/10.1073/pnas.1110633108
Eme L, Sharpe SC, Brown MW, Roger AJ (2014) On the age of eukaryotes: evaluating evidence from fossils and molecular clocks. Cold Spring Harb Perspect Biol 6:a016139. https://doi.org/10.1101/cshperspect.a016139
Strassert JFH, Jamy M, Mylnikov AP, Tikhonenkov DV, Burki F (2019) New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life. Mol Biol Evol 36:757–765. https://doi.org/10.1093/molbev/msz012
Jarvis P, Soll J (2001) Toc, Tic, and chloroplast protein import. Biochim Biophys Acta - Mol Cell Res 1541:64–79. https://doi.org/10.1016/S0167-4889(01)00147-1
Kamimura Y, Tanaka H, Kobayashi Y, Shikanai T, Nishimura Y (2018) Chloroplast nucleoids as a transformable network revealed by live imaging with a microfluidic device. Commun Biol 1:47. https://doi.org/10.1038/s42003-018-0055-1
Sun Y, Valente-Paterno M, Bakhtiari S, Law C, Zhan Y, Zerges W (2019) Photosystem biogenesis is localized to the translation zone in the chloroplast of Chlamydomonas. Plant Cell 31:3057–3072. https://doi.org/10.1105/tpc.19.00263
Husnik F, Keeling PJ (2019) The fate of obligate endosymbionts: reduction, integration, or extinction. Curr Opin Genet Dev 58–59:1–8. https://doi.org/10.1016/j.gde.2019.07.014
Oborník M (2022) Organellar evolution: a path from benefit to dependence. Microorganisms 10:122. https://doi.org/10.3390/microorganisms10010122
Petersen J, Ludewig AK, Michael V, Bunk B, Jarek M, Baurain D, Brinkmann H (2014) Chromera velia, endosymbioses and the rhodoplex hypothesis – Plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages). Genome Biol Evol 6:666–684. https://doi.org/10.1093/gbe/evu043
Stiller JW, Schreiber J, Yue J, Guo H, Ding Q, Huang J (2014) The evolution of photosynthesis in chromist algae through serial endosymbioses. Nat Commun 5:5764. https://doi.org/10.1038/ncomms6764
Bodył A (2017) Did some red alga-derived plastids evolve via kleptoplastidy? A hypothesis. Biol Rev 93:201–222. https://doi.org/10.1111/brv.12340
Penot M, Dacks JB, Read B, Dorrell RG (2022) Genomic and meta-genomic insights into the functions, diversity and global distribution of haptophyte algae. Appl Phycol 3:340–359. https://doi.org/10.1080/26388081.2022.2103732
Nowack ECM, Melkonian M, Glöckner G (2008) Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr Biol 18:410–418. https://doi.org/10.1016/j.cub.2008.02.051
Nakayama T, Kamikawa R, Tanifuji G, Kashiyama Y, Ohkouchi N, Archibald JM, Inagaki Y (2014) Complete genome of a nonphotosynthetic cyanobacterium in a diatom reveals recent adaptations to an intracellular lifestyle. Proc Natl Acad Sci U S A 111:11407–11412. https://doi.org/10.1073/pnas.1405222111
Maréchal A, Brisson N (2010) Recombination and the maintenance of plant organelle genome stability. New Phytol 186:299–317. https://doi.org/10.1111/j.1469-8137.2010.03195.x
Dagan T et al (2013) Genomes of stigonematalean cyanobacteria (subsection V) and the evolution of oxygenic photosynthesis from prokaryotes to plastids. Genome Biol Evol 5:31–44. https://doi.org/10.1093/gbe/evs117
Simm S, Keller M, Selymesi M, Schleiff E (2015) The composition of the global and feature specific cyanobacterial core-genomes. Front Microbiol 6:219. https://doi.org/10.3389/fmicb.2015.00219
Terashima M, Specht M, Hippler M (2011) The chloroplast proteome: a survey from the Chlamydomonas reinhardtii perspective with a focus on distinctive features. Curr Genet 57:151–168. https://doi.org/10.1007/s00294-011-0339-1
Ferro M et al (2010) AT-CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol Cell Proteomics 9:1063–1084. https://doi.org/10.1074/mcp.M900325-MCP200
Novák Vanclová AMG et al (2019) Metabolic quirks and the colourful history of the Euglena gracilis secondary plastid. New Phytol 225:1578–1592. https://doi.org/10.1111/nph.16237
Singer A, Poschmann G, Mühlich C, Valadez-Cano C, Hänsch S, Hüren V, Rensing SA, Stühler K, Nowack ECM (2017) Massive protein import into the early-evolutionary-stage photosynthetic organelle of the amoeba Paulinella chromatophora. Curr Biol 27:2763–2773. https://doi.org/10.1016/j.cub.2017.08.010
Gross J, Bhattacharya D (2009) Mitochondrial and plastid evolution in eukaryotes: an outsiders’ perspective. Nat Rev Genet 10:495–505. https://doi.org/10.1038/nrg2610
Jiroutová K, Kořený L, Bowler C, Oborník M (2010) A gene in the process of endosymbiotic transfer. PloS One 5:e13234. https://doi.org/10.1371/journal.pone.0013234
Uthanumallian K, Iha C, Repetti SI, Chan CX, Bhattacharya D, Duchene S, Verbruggen H (2021) Tightly constrained genome reduction and relaxation of purifying selection during secondary plastid endosymbiosis. Mol Biol Evol 39:msab295. https://doi.org/10.1093/molbev/msab295
Dorrell RG, Howe CJ (2012) What makes a chloroplast? Reconstructing the establishment of photosynthetic symbioses. J Cell Sci 125:1865–1875. https://doi.org/10.1242/jcs.102285
Archibald JM, Rogers MB, Toop M, Ken-Ichiro I, Keeling PJ (2003) Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. Proc Natl Acad Sci U S A 100:7678–7683. https://doi.org/10.1073/pnas.1230951100
Suzuki K, Miyagishima SY (2009) Eukaryotic and eubacterial contributions to the establishment of plastid proteome estimated by large-scale phylogenetic analyses. Mol Biol Evol 27:581–590. https://doi.org/10.1093/molbev/msp273
Dorrell RG et al (2017) Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. Elife 6:e23717. https://doi.org/10.7554/eLife.23717
Ponce-Toledo RI, Moreira D, López-García P, Deschamps P (2018) Secondary plastids of euglenids and chlorarachniophytes function with a mix of genes of red and green algal ancestry. Mol Biol Evol 35:2198–2204. https://doi.org/10.1093/molbev/msy121
Sato N (2019) Complex origins of chloroplast membranes with photosynthetic machineries: multiple transfers of genes from divergent organisms at different times or a single endosymbiotic event? J Plant Res 133:15–33. https://doi.org/10.1007/s10265-019-01157-z
Dorrell RG et al (2021) Phylogenomic fingerprinting of tempo and functions of horizontal gene transfer within ochrophytes. Proc Natl Acad Sci U S A 118:e2009974118. https://doi.org/10.1073/PNAS.2009974118
Ku C, Nelson-Sathi S, Roettger M, Garg S, Hazkani-Covo E, Martin WF (2015) Endosymbiotic gene transfer from prokaryotic pangenomes: inherited chimerism in eukaryotes. Proc Natl Acad Sci U S A 112:10139–10146. https://doi.org/10.1073/pnas.1421385112
Larkum AWD, Lockhart PJ, Howe CJ (2007) Shopping for plastids. Trends Plant Sci 12:189–195. https://doi.org/10.1016/j.tplants.2007.03.011
Ford DW (1998) You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 14:307–311. https://doi.org/10.1016/S0168-9525(98)01494-2
Schön ME et al (2021) Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae. Nat Commun 12:6651. https://doi.org/10.1038/s41467-021-26918-0
Martin W et al (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci U S A 99:12246–12251. https://doi.org/10.1073/pnas.182432999
Kořený L, Oborník M (2011) Sequence evidence for the presence of two tetrapyrrole pathways in Euglena gracilis. Genome Biol Evol 3:359–364. https://doi.org/10.1093/gbe/evr029
Wolf YI, Koonin EV (2013) Genome reduction as the dominant mode of evolution. Bioessays 35:829–837. https://doi.org/10.1002/bies.201300037
Wilken S, Huisman J, Naus-Wiezer S, Van Donk E (2013) Mixotrophic organisms become more heterotrophic with rising temperature. Ecol Lett 16:225–233. https://doi.org/10.1111/ele.12033
Jones RI (2000) Mixotrophy in planktonic protists: an overview. Freshw Biol 45:219–226. https://doi.org/10.1046/j.13652427.2000.00672.x
Borza T, Popescu CE, Lee RW (2005) Multiple metabolic roles for the nonphotosynthetic plastid of the green alga Prototheca wickerhamii. Eukaryot Cell 4:253–261. https://doi.org/10.1128/EC.4.2.253-261.2005
Salomaki ED, Lane CE (2014) Are all red algal parasites cut from the same cloth? Acta Soc Bot Pol 83:369–375. https://doi.org/10.5586/asbp.2014.047
Janouškovec J, Tikhonenkov DV, Burki F, Howe AT, Kolísko M, Mylnikov AP, Keeling PJ (2015) Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proc Natl Acad Sci 112:10200–10207. https://doi.org/10.1073/pnas.1423790112
Záhonová K, Füssy Z, Birčák E, Novák Vanclová AMG, Klimeš V, Vesteg M, Krajčovič J, Oborník M, Eliáš M (2018) Peculiar features of the plastids of the colourless alga Euglena longa and photosynthetic euglenophytes unveiled by transcriptome analyses. Sci Rep 8:17012. https://doi.org/10.1038/s41598-018-35389-1
Smith DR, Crosby K, Lee RW (2011) Correlation between nuclear plastid DNA abundance and plastid number supports the limited transfer window hypothesis. Genome Biol Evol 3:365–371. https://doi.org/10.1093/gbe/evr001
Barbrook AC, Howe CJ, Purton S (2006) Why are plastid genomes retained in non-photosynthetic organisms? Trends Plant Sci 11:101–108. https://doi.org/10.1016/j.tplants.2005.12.004
Douglas S et al (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410:1091–1096. https://doi.org/10.1038/35074092
Gilson PR, Su V, Slamovits CH, Reith ME, Keeling PJ, McFadden GI (2006) Complete nucleotide sequence of the chlorarachniophyte nucleomorph: nature’s smallest nucleus. Proc Natl Acad Sci U S A 103:9566–9571. https://doi.org/10.1073/pnas.0600707103
Archibald JM, Lane CE (2009) Going, going, not quite gone: nucleomorphs as a case study in nuclear genome reduction. J Hered 100:582–590. https://doi.org/10.1093/jhered/esp055
Stiller JW (2014) Toward an empirical framework for interpreting plastid evolution. J Phycol 50:462–471. https://doi.org/10.1111/jpy.12178
Sazanov LA, Burrows PA, Nixon PJ (1998) The plastid ndh genes code for an NADH-specific dehydrogenase: isolation of a complex I analogue from pea thylakoid membranes. Proc Natl Acad Sci U S A 95:1319–1324. https://doi.org/10.1073/pnas.95.3.1319
Shikanai T (2016) Chloroplast NDH: a different enzyme with a structure similar to that of respiratory NADH dehydrogenase. Biochim Biophys Acta - Bioenerg 1857:1015–1022. https://doi.org/10.1016/j.bbabio.2015.10.013
Lee JM, Cho CH, Park SI, Choi JW, Song HS, West JA, Bhattacharya D, Yoon HS (2016) Parallel evolution of highly conserved plastid genome architecture in red seaweeds and seed plants. BMC Biol 14:75. https://doi.org/10.1186/s12915-016-0299-5
Muñoz-Gómez SA, Mejía-Franco FG, Durnin K, Colp M, Grisdale CJ, Archibald JM, Slamovits CH (2017) The new red algal subphylum Proteorhodophytina comprises the largest and most divergent plastid genomes known. Curr Biol 27:1677–1684. https://doi.org/10.1016/j.cub.2017.04.054
Janouškovec J, Liu SL, Martone PT, Carré W, Leblanc C, Collén J, Keeling PJ (2013) Evolution of red algal plastid genomes: ancient architectures, introns, horizontal gene transfer, and taxonomic utility of plastid markers. PloS One 8:e59001. https://doi.org/10.1371/journal.pone.0059001
de Vries J, Sousa FL, Bölter B, Soll J, Goulda SB (2015) YCF1: a green TIC? Plant Cell 27:1827–1833. https://doi.org/10.1105/tpc.114.135541
Kikuchi S et al (2018) A Ycf2-FtsHi heteromeric AAA-ATPase complex is required for chloroplast protein import. Plant Cell 30:2677–2703. https://doi.org/10.1105/tpc.18.00357
Turmel M, Lemieux C (2018) Evolution of the plastid genome in green algae. Adv Bot Res 85:157–193. https://doi.org/10.1016/bs.abr.2017.11.010
Jans F et al (2008) A type II NAD(P)H dehydrogenase mediates light-independent plastoquinone reduction in the chloroplast of Chlamydomonas. Proc Natl Acad Sci U S A 105:20546–20551. https://doi.org/10.1073/pnas.0806896105
Ruhlman TA et al (2015) NDH expression marks major transitions in plant evolution and reveals coordinate intracellular gene loss. BMC Plant Biol 15:100. https://doi.org/10.1186/s12870-015-0484-7
Hunsperger HM, Randhawa T, Cattolico RA (2015) Extensive horizontal gene transfer, duplication, and loss of chlorophyll synthesis genes in the algae. BMC Evol Biol 15:16. https://doi.org/10.1186/s12862-015-0286-4
Delaye L, Valadez-cano C, Pérez-Zamorano B (2016) How really ancient is Paulinella chromatophora? PLOS Curr 8:ecurrents.tol.e68a099364bb1a1e129a17b4e06b0c6b. https://doi.org/10.1371/currents.tol.e68a099364bb1a1e129a17b4e06b0c6b
Gabr A, Grossman AR, Bhattacharya D (2020) Paulinella, a model for understanding plastid primary endosymbiosis. J Phycol 56:837–843. https://doi.org/10.1111/jpy.13003
Lhee D, Ha J, Kim S, Park MG, Bhattacharya D, Yoon HS (2019) Evolutionary dynamics of the chromatophore genome in three photosynthetic Paulinella species. Sci Rep 9:2560. https://doi.org/10.1038/s41598-019-38621-8
Felsner G, Sommer MS, Gruenheit N, Hempel F, Moog D, Zauner S, Martin W, Maier UG (2010) ERAD components in organisms with complex red plastids suggest recruitment of a preexisting protein transport pathway for the periplastid membrane. Genome Biol Evol 3:140–150. https://doi.org/10.1093/gbe/evq074
Lane CE, Van Den Heuvel K, Kozera C, Curtis BA, Parsons BJ, Bowman S, Archibald JM (2007) Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function. Proc Natl Acad Sci U S A 104:19908–19913. https://doi.org/10.1073/pnas.0707419104
Kim JI, Tanifuji G, Jeong M, Shin W, Archibald JM (2022) Gene loss, pseudogenization, and independent genome reduction in non-photosynthetic species of Cryptomonas (Cryptophyceae) revealed by comparative nucleomorph genomics. BMC Biol 20:227. https://doi.org/10.1186/s12915-022-01429-6
Kim JI, Moore CE, Archibald JM, Bhattacharya D, Yi G, Yoon HS, Shin W (2017) Evolutionary dynamics of cryptophyte plastid genomes. Genome Biol Evol 9:1859–1872. https://doi.org/10.1093/gbe/evx123
Duplessis MR, Karol KG, Adman ET, Choi LYS, Jacobs MA, Cattolico RA (2007) Chloroplast His-to-Asp signal transduction: a potential mechanism for plastid gene regulation in Heterosigma akashiwo (Raphidophyceae). BMC Evol Biol 7:70. https://doi.org/10.1186/1471-2148-7-70
Hovde BT, Starkenburg SR, Hunsperger HM, Mercer LD, Deodato CR, Jha RK, Chertkov O, Monnat RJ, Cattolico RA (2014) The mitochondrial and chloroplast genomes of the haptophyte Chrysochromulina tobin contain unique repeat structures and gene profiles. BMC Genomics 15:604. https://doi.org/10.1186/1471-2164-15-604
Zverkov OA, Seliverstov AV, Lyubetsky VA (2016) Regulation of expression and evolution of genes in plastids of rhodophytic branch. Life 6:7. https://doi.org/10.3390/life6010007
Rice DW, Palmer JD (2006) An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters. BMC Biol 4:31. https://doi.org/10.1186/1741-7007-4-31
Andersen RA (2004) Biology and systematics of heterokont and haptophyte algae. Am J Bot 91:1508–1522. https://doi.org/10.3732/ajb.91.10.1508
Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D (2009) Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324:1724–1726. https://doi.org/10.1126/science.1172983
Ševčíková T, Yurchenko T, Fawley KP, Amaral R, Strnad H, Santos LMA, Fawley MW, Eliáš M (2019) Plastid genomes and proteins illuminate the evolution of eustigmatophyte algae and their bacterial endosymbionts. Genome Biol Evol 11:362–379. https://doi.org/10.1093/gbe/evz004
Kim JI, Shin H, Škaloud P, Jung J, Yoon HS, Archibald JM, Shin W (2019) Comparative plastid genomics of Synurophyceae: inverted repeat dynamics and gene content variation. BMC Evol Biol 19:20. https://doi.org/10.1186/s12862-018-1316-9
Starko S, Bringloe TT, Soto Gomez M, Darby H, Graham SW, Martone PT (2021) Genomic rearrangements and sequence evolution across brown algal organelles. Genome Biol Evol 13:evab124. https://doi.org/10.1093/gbe/evab124
Han KY, Maciszewski K, Graf L, Yang JH, Andersen RA, Karnkowska A, Yoon HS (2019) Dictyochophyceae plastid genomes reveal unusual variability in their organization. J Phycol 55:1166–1180. https://doi.org/10.1111/jpy.12904
Graupner N, Jensen M, Bock C, Marks S, Rahmann S, Beisser D, Boenigk J (2018) Evolution of heterotrophy in chrysophytes as reflected by comparative transcriptomics. FEMS Microbiol Ecol 94:fiy039. https://doi.org/10.1093/FEMSEC/FIY039
Ruck EC, Nakov T, Jansen RK, Theriot EC, Alverson AJ (2014) Serial gene losses and foreign DNA underlie size and sequence variation in the plastid genomes of diatoms. Genome Biol Evol 6:644–654. https://doi.org/10.1093/gbe/evu039
Cavalier-Smith T (2018) Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences. Protoplasma 255:297–357. https://doi.org/10.1007/s00709-017-1147-3
Moore RB et al (2008) A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451:959–963. https://doi.org/10.1038/nature06635
Janouškovec J, Horák A, Oborník M, Lukeš J, Keeling PJ (2010) A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci U S A 107:10949–10954. https://doi.org/10.1073/pnas.1003335107
Hofmann E, Wrench PM, Sharples FP, Hiller RG (1996) Structural basis of light harvesting by carotenoids. Science 272:1788–1791
Patron NJ, Waller RF (2007) Transit peptide diversity and divergence: a global analysis of plastid targeting signals. Bioessays 29:1048–1058. https://doi.org/10.1002/bies.20638
Barbrook AC, Santucci N, Plenderleith LJ, Hiller RG, Howe CJ (2006) Comparative analysis of dinoflagellate chloroplast genomes reveals rRNA and tRNA genes. BMC Genomics 7:1–15. https://doi.org/10.1186/1471-2164-7-297
Howe CJ, Barbrook AC, Nisbet RER, Lockhart PJ, Larkum AWD (2008) The origin of plastids. Philos Trans R Soc B Biol Sci 363:2675–2685. https://doi.org/10.1098/rstb.2008.0050
Nelson MJ, Green BR (2005) Double hairpin elements and tandem repeats in the non-coding region of Adenoides eludens chloroplast gene minicircles. Gene 358:102–110. https://doi.org/10.1016/j.gene.2005.05.024
Barbrook AC, Dorrell RG, Burrows J, Plenderleith LJ, Nisbet RER, Howe CJ (2012) Polyuridylylation and processing of transcripts from multiple gene minicircles in chloroplasts of the dinoflagellate Amphidinium carterae. Plant Mol Biol 79:347–357. https://doi.org/10.1007/s11103-012-9916-z
Dorrell RG, Howe CJ (2015) Integration of plastids with their hosts: lessons learned from dinoflagellates. Proc Natl Acad Sci U S A 112:10247–10254. https://doi.org/10.1073/pnas.1421380112
Koumandou VL, Howe CJ (2007) The copy number of chloroplast gene minicircles changes dramatically with growth phase in the dinoflagellate Amphidinium operculatum. Protist 158:89–103. https://doi.org/10.1016/j.protis.2006.08.003
Janouskovec J et al (2017) Major transitions in dinoflagellate evolution unveiled by phylotranscriptomics. Proc Natl Acad Sci U S A 114:E171–E180. https://doi.org/10.1073/pnas.1614842114
Park MG, Kim M, Kim S (2014) The acquisition of plastids/phototrophy in heterotrophic dinoflagellates. Acta Protozool 53:39–50. https://doi.org/10.4467/16890027AP.14.005.1442
Park GM, Kim S, Kim SH, Myung G, Kang GY, Yih W (2006) First successful culture of the marine dinoflagellate Dinophysis acuminata. Aquat Microb Ecol 45:101–106. https://doi.org/10.3354/ame045101
Sweeney BM (1976) Pedinomonas noctilucae (Prasinophyceae), the flagellate symbiotic in Noctiluca (Dinophyceae) in Southeast Asia. J Phycol 12:460–464. https://doi.org/10.1111/j.1529-8817.1976.tb02874.x
Gast RJ, Moran DM, Dennett MR, Caron DA (2007) Kleptoplasty in an Antarctic dinoflagellate: caught in evolutionary transition? Environ Microbiol 9:39–45. https://doi.org/10.1111/j.1462-2920.2006.01109.x
Tomas RN, Cox ER, Steidinger KA (1973) Peridinium balticum (Levander) Lemmermann, an unusual dinoflagellate with a mesocaryotic and an eucaryotic nucleus. J Phycol 9:91–98. https://doi.org/10.1111/j.0022-3646.1973.00091.x
Yamada N, Sym SD, Horiguchi T (2017) Identification of highly divergent diatom-derived chloroplasts in dinoflagellates, including a description of Durinskia kwazulunatalensis sp. nov. (Peridiniales, Dinophyceae). Mol Biol Evol 34:1335–1351. https://doi.org/10.1093/molbev/msx054
Sarai C et al (2020) Dinoflagellates with relic endosymbiont nuclei as models for elucidating organellogenesis. Proc Natl Acad Sci U S A 117:5364–5375. https://doi.org/10.1073/pnas.1911884117
Matsuo E, Morita K, Nakayama T, Yazaki E, Sarai C, Takahashi K, Iwataki M, Inagaki Y (2022) Comparative plastid genomics of green-colored dinoflagellates unveils parallel genome compaction and RNA editing. Front Plant Sci 13:918543. https://doi.org/10.3389/fpls.2022.918543
Elbrächter M, Schnepf E (1996) Gymnodinium chlorophorum, a new, green, bloom-forming dinoflagellate (Gymnodiniales, Dinophyceae) with a vestigial prasinophyte endosymbiont. Phycologia 35:381–393. https://doi.org/10.2216/i0031-8884-35-5-381.1
Schnepf E, Elbrächter M (1999) Dinophyte chloroplasts and phylogeny - A review. Grana 38:81–97. https://doi.org/10.1080/713786928
Tengs T, Dahlberg OJ, Shalchian-Tabrizi K, Klaveness D, Rudi K, Delwiche CF, Jakobsen KS (2000) Phylogenetic analyses indicate that the 19’hexanoyloxy-fucoxanthin-containing dinoflagellates have tertiary plastids of haptophyte origin. Mol Biol Evol 17:718–729. https://doi.org/10.1093/oxfordjournals.molbev.a026350
Hansen G, Botes L, De Salas M (2007) Ultrastructure and large subunit rDNA sequences of Lepidodinium viride reveal a close relationship to Lepidodinium chlorophorum comb. nov. (= Gymnodinium chlorophorum). Phycol Res 55:25–41. https://doi.org/10.1111/j.1440-1835.2006.00442.x
Yamada N, Tanaka A, Horiguchi T (2015) Pigment compositions are linked to the habitat types in dinoflagellates. J Plant Res 128:923–932. https://doi.org/10.1007/s10265-015-0745-4
Dodge JD (1984) The functional and phylogenetic significance of dinoflagellate eyespots. Biosystems 16:259–267. https://doi.org/10.1016/0303-2647(83)90009-6
Imanian B, Pombert JF, Keeling PJ (2010) The complete plastid genomes of the two ‘Dinotoms’ Durinskia baltica and Kryptoperidinium foliaceum. PloS One 5:e10711. https://doi.org/10.1371/journal.pone.0010711
Imanian B, Pombert JF, Dorrell RG, Burki F, Keeling PJ (2012) Tertiary endosymbiosis in two dinotoms has generated little change in the mitochondrial genomes of their dinoflagellate hosts and diatom endosymbionts. PloS One 7:e43763. https://doi.org/10.1371/journal.pone.0043763
Gabrielsen TM et al (2011) Genome evolution of a tertiary dinoflagellate plastid. PloS One 6:e19132. https://doi.org/10.1371/journal.pone.0019132
Jackson CJ, Gornik SG, Waller RF (2013) A tertiary plastid gains RNA editing in its new host. Mol Biol Evol 30:788–792. https://doi.org/10.1093/molbev/mss270
Richardson E, Dorrell RG, Howe CJ (2014) Genome-wide transcript profiling reveals the coevolution of plastid gene sequences and transcript processing pathways in the fucoxanthin dinoflagellate Karlodinium veneficum. Mol Biol Evol 31:2376–2386. https://doi.org/10.1093/molbev/msu189
Turmel M, Gagnon MC, O’Kelly CJ, Otis C, Lemieux C (2009) The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Mol Biol Evol 26:631–648. https://doi.org/10.1093/molbev/msn285
Jackson C, Knoll AH, Chan CX, Verbruggen H (2018) Plastid phylogenomics with broad taxon sampling further elucidates the distinct evolutionary origins and timing of secondary green plastids. Sci Rep 8:1523. https://doi.org/10.1038/s41598-017-18805-w
Sláviková S, Vacula R, Fang Z, Ehara T, Osafune T, Schwartzbach SD (2005) Homologous and heterologous reconstitution of Golgi to chloroplast transport and protein import into the complex chloroplasts of Euglena. J Cell Sci 118:1651–1661. https://doi.org/10.1242/jcs.02277
Suzuki S, Hirakawa Y, Kofuji R, Sugita M, Ishida K, ichiro. (2016) Plastid genome sequences of Gymnochlora stellata, Lotharella vacuolata, and Partenskyella glossopodia reveal remarkable structural conservation among chlorarachniophyte species. J Plant Res 129:581–590. https://doi.org/10.1007/s10265-016-0804-5
Hirakawa Y, Burki F, Keeling PJ (2012) Genome-based reconstruction of the protein import machinery in the secondary plastid of a chlorarachniophyte alga. Eukaryot Cell 11:324–333. https://doi.org/10.1128/EC.05264-11
Kamikawa R et al (2015) Multiple losses of photosynthesis in Nitzschia (Bacillariophyceae). Phycol Res 63:19–28. https://doi.org/10.1111/pre.12072
Maciszewski K, Karnkowska A (2019) Should I stay or should I go? Retention and loss of components in vestigial endosymbiotic organelles. Curr Opin Genet Dev 58–59:33–39. https://doi.org/10.1016/j.gde.2019.07.013
Hadariová L, Vesteg M, Hampl V, Krajčovič J (2017) Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists. Curr Genet 64:365–387. https://doi.org/10.1007/s00294-017-0761-0
Kohzuma K, Froehlich JE, Davis GA, Temple JA, Minhas D, Dhingra A, Cruz JA, Kramer DM (2017) The role of light–dark regulation of the chloroplast ATP synthase. Front Plant Sci 8:1248. https://doi.org/10.3389/fpls.2017.01248
Tanifuji G, Kamikawa R, Moore CE, Mills T, Onodera NT, Archibald JM, Inagaki Y, Hashimoto T (2020) Comparative plastid genomics of Cryptomonas species reveals fine-scale genomic responses to loss of photosynthesis. Genome Biol Evol 12:3926–3937. https://doi.org/10.1093/gbe/evaa001
Grossmann L, Bock C, Schweikert M, Boenigk J (2016) Small but manifold - Hidden diversity in ‘Spumella-like flagellates’. J Eukaryot Microbiol 63:419–439. https://doi.org/10.1111/jeu.12287
Kayama M et al (2020) A non-photosynthetic green alga illuminates the reductive evolution of plastid electron transport systems. BMC Biol 18:126. https://doi.org/10.1186/s12915-020-00853-w
Füssy Z, Záhonová K, Tomčala A, Krajčovič J, Yurchenko V, Oborník M, Eliáš M (2020) The cryptic plastid of Euglena longa defines a new type of nonphotosynthetic plastid organelle. mSphere 5:e00675-20. https://doi.org/10.1128/msphere.00675-20
Mathur V, Kolísko M, Hehenberger E, Irwin NAT, Leander BS, Kristmundsson Á, Freeman MA, Keeling PJ (2019) Multiple independent origins of apicomplexan-like parasites. Curr Biol 29:2936–2941. https://doi.org/10.1016/j.cub.2019.07.019
Janouskovec J, Paskerova GG, Miroliubova TS, Mikhaiiov KV, Birley T, Aieoshin VV, Simdyanov TG (2019) Apicomplexan-like parasites are polyphyletic and widely but selectively dependent on cryptic plastid organelles. Elife 8:e49662. https://doi.org/10.7554/eLife.49662
Waller RF et al (1998) Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc Natl Acad Sci U S A 95:12352–12357. https://doi.org/10.1073/pnas.95.21.12352
Yeh E, DeRisi JL (2011) Chemical rescue of malaria parasites lacking an apicoplast defines organelle function in blood-stage Plasmodium falciparum. PLoS Biol 9:e1001138. https://doi.org/10.1371/journal.pbio.1001138
Vaughan AM, O’neill MT, Tarun AS, Camargo N, Phuong TM, Aly ASI, Cowman AF, SHI K (2009) Type II fatty acid synthesis is essential only for malaria parasite late liver stage development. Cell Microbiol 11:506–520. https://doi.org/10.1111/j.1462-5822.2008.01270.x
Ke H et al (2014) The heme biosynthesis pathway is essential for Plasmodium falciparum development in mosquito stage but not in blood stages. J Biol Chem 289:34827–34837. https://doi.org/10.1074/jbc.M114.615831
Abrahamsen MS et al (2004) Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304:441–445. https://doi.org/10.1126/science.1094786
Toso MA, Omoto CK (2007) Gregarina niphandrodes may lack both a plastid genome and organelle. J Eukaryot Microbiol 54:66–72. https://doi.org/10.1111/j.1550-7408.2006.00229.x
Mathur V, Kwong WK, Husnik F, Irwin NAT, Kristmundsson Á, Gestal C, Freeman M, Keeling PJ (2021) Phylogenomics identifies a new major subgroup of apicomplexans, Marosporida class nov., with extreme apicoplast genome reduction. Genome Biol Evol 13:evaa244. https://doi.org/10.1093/gbe/evaa244
Kwong WK, del Campo J, Mathur V, Vermeij MJA, Keeling PJ (2019) A widespread coral-infecting apicomplexan with chlorophyll biosynthesis genes. Nature 568:103–107. https://doi.org/10.1038/s41586-019-1072-z
Shaver JM, Oldenburg DJ, Bendich AJ (2006) Changes in chloroplast DNA during development in tobacco, Medicago truncatula, pea, and maize. Planta 224:72–82. https://doi.org/10.1007/s00425-005-0195-7
Green B (1976) Covalently closed minicircular DNA associated with Acetabularia chloroplasts. Biochim Biophys Acta 447:156–166
Brembu T, Winge P, Tooming-Klunderud A, Nederbragt AJ, Jakobsen KS, Bones AM (2014) The chloroplast genome of the diatom Seminavis robusta: new features introduced through multiple mechanisms of horizontal gene transfer. Mar Genomics 16:17–27. https://doi.org/10.1016/j.margen.2013.12.002
Wang L et al (2013) Complete sequence and analysis of plastid genomes of two economically important red algae: Pyropia haitanensis and Pyropia yezoensis. PloS One 8:e65902. https://doi.org/10.1371/journal.pone.0065902
Watanabe S, Fučíková K, Lewis LA, Lewis PO (2016) Hiding in plain sight: Koshicola spirodelophila gen. et sp. nov. (Chaetopeltidales, Chlorophyceae), a novel green alga associated with the aquatic angiosperm Spirodela polyrhiza. Am J Bot 103:865–875. https://doi.org/10.3732/ajb.1500481
Del Cortona A et al (2017) The plastid genome in Cladophorales green algae is encoded by hairpin chromosomes. Curr Biol 27:3771–3782. https://doi.org/10.1016/j.cub.2017.11.004
Fang J, Liu B, Liu G, Verbruggen H, Zhu H (2021) Six newly sequenced chloroplast genomes from Trentepohliales: the inflated genomes, alternative genetic code and dynamic evolution. Front Plant Sci 12:780054. https://doi.org/10.3389/fpls.2021.780054
Brouard JS, Otis C, Lemieux C, Turmel M (2010) The exceptionally large chloroplast genome of the green alga Floydiella terrestris illuminates the evolutionary history of the Chlorophyceae. Genome Biol Evol 2:240–256. https://doi.org/10.1093/gbe/evq014
Smith DR, Lee RW (2009) The mitochondrial and plastid genomes of Volvox carteri: bloated molecules rich in repetitive DNA. BMC Genomics 10:132. https://doi.org/10.1186/1471-2164-10-132
Tymms MJ, Schweiger HG (1985) Tandemly repeated nonribosomal DNA sequences in the chloroplast genome of an Acetabularia mediterranea strain. Proc Natl Acad Sci U S A 82:1706–1710. https://doi.org/10.1073/pnas.82.6.1706
Figueroa-Martinez F, Nedelcu AM, Smith DR, Reyes-Prieto A (2017) The plastid genome of Polytoma uvella is the largest known among colorless algae and plants and reflects contrasting evolutionary paths to nonphotosynthetic lifestyles. Plant Physiol 173:932–943. https://doi.org/10.1104/pp.16.01628
Pánek T et al (2022) A new lineage of non-photosynthetic green algae with extreme organellar genomes. BMC Biol 20:66. https://doi.org/10.1186/s12915-022-01263-w
Adams CC, Stern DB (1990) Control of mRNA stability in chloroplasts by 3′ inverted repeats: effects of stem and loop mutations on degradation of PsbA mRNA in vitro. Nucleic Acids Res 18:6003–6010. https://doi.org/10.1093/nar/18.20.6003
Zhu A, Guo W, Gupta S, Fan W, Mower JP (2016) Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates. New Phytol 209:1747–1756. https://doi.org/10.1111/nph.13743
Delwiche CF, Palmer JD (1996) Rampant horizontal transfer and duplication of Rubisco genes in eubacteria and plastids. Mol Biol Evol 13:873–882. https://doi.org/10.1093/oxfordjournals.molbev.a025647
Mackiewicz P, Bodył A, Moszczyński K (2013) The case of horizontal gene transfer from bacteria to the peculiar dinoflagellate plastid genome. Mob Genet Elem 3:e25845. https://doi.org/10.4161/mge.25845
Yurchenko T, Ševčíková T, Strnad H, Butenko A, Eliáš M (2016) The plastid genome of some eustigmatophyte algae harbours a bacteria-derived six-gene cluster for biosynthesis of a novel secondary metabolite. Open Biol 6:160249. https://doi.org/10.1098/rsob.160249
Cattolico R et al (2008) Chloroplast genome sequencing analysis of Heterosigma akashiwo CCMP452 (West Atlantic) and NIES293 (West Pacific) strains. BMC Genomics 9:211. https://doi.org/10.1186/1471-2164-9-211
Gornik SG et al (2015) Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. PNAS 112:5767–5772. https://doi.org/10.1073/pnas.1423400112
Smith DR, Asmail SR (2014) Next-generation sequencing data suggest that certain nonphotosynthetic green plants have lost their plastid genomes. New Phytol 204:7–11. https://doi.org/10.1111/nph.12919
De Vargas C et al (2015) Eukaryotic plankton diversity in the sunlit ocean. Science 348:1261605. https://doi.org/10.1126/science.1261605
Su HJ et al (2019) Novel genetic code and record-setting AT-richness in the highly reduced plastid genome of the holoparasitic plant Balanophora. Proc Natl Acad Sci U S A 116:934–943. https://doi.org/10.1073/pnas.1816822116
Acknowledgments
The authors acknowledge funding from the Charles University institutional funding (Cooperatio Biology, SVV 260432/2018), the Czech Science Foundation (grant nos. 21-03224S and 23-07277S), and the Ministry of Education, Youth and Sports of the Czech Republic (MEYS-CR) within the Centre for Research of Pathogenicity and Virulence of Parasites (project No. CZ.02.1.01/0.0/0.0/16_019/0000759).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Konupková, A., Tomečková, L., Záhonová, K., Oborník, M., Füssy, Z. (2024). Easier Lost than Found? What We Know about Plastid Genome Reduction. In: Schwartzbach, S.D., Kroth, P.G., Oborník, M. (eds) Endosymbiotic Organelle Acquisition. Springer, Cham. https://doi.org/10.1007/978-3-031-57446-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-57446-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-57444-3
Online ISBN: 978-3-031-57446-7
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)