Abstract
Endosymbiotic gene transfer (EGT), the transfer of endosymbiont genes to the host nucleus, is considered a fundamental process of plastid endosymbiosis. Together with retargeting of the protein products of EGTs to the plastid where they function, EGTs are viewed as a hallmark of plastids as genetically integrated organelles. Despite its central role in one of the biggest evolutionary transitions on our planet, and a long history of inquiry into plastid evolution, our knowledge about the extent of EGTs, their roles in the host cell and timing of acquisition, is still patchy. This chapter summarizes our current knowledge about EGT, framing the discussion in the more general context of horizontal gene transfer (HGT), and highlighting the issues that research in this field is facing. While the need to investigate gene transfer in the context of plastid endosymbiosis is universally acknowledged, there is no consensus on the methodology used to research EGT and HGT, making comparisons between studies difficult. However, some patterns are beginning to emerge and the central role of EGT in plastid establishment is now being shifted toward a shared role between EGT, HGT, and contributions by the host.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Gawryluk RMR, Tikhonenkov DV, Hehenberger E, Husnik F, Mylnikov AP, Keeling PJ (2019) Non-photosynthetic predators are sister to red algae. Nature 572:240–243. https://doi.org/10.1038/s41586-019-1398-6
Schön ME, Zlatogursky VV, Singh RP, Poirier C, Wilken S, Mathur V (2021) Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae. Nat Commun 12. https://doi.org/10.1038/s41467-021-26918-0
Irisarri I, Strassert JFH, Burki F (2021) Phylogenomic insights into the origin of primary plastids. Syst Biol:2–45. https://doi.org/10.1093/sysbio/syab036
Nowack ECM, Weber APM (2018) Genomics-informed insights into endosymbiotic organelle evolution in photosynthetic eukaryotes. Annu Rev Plant Biol 69:51–84. https://doi.org/10.1146/annurev-arplant-042817-040209
Martin W, Goremykin V, Hansmann S (1998) Gene transfer to the nucleus and the evolution of chloroplasts. Curr Opin Plant Biol 1:276. https://doi.org/10.1016/1369-5266(88)80011-6
Stegemann S, Hartmann S, Ruf S, Bock R (2003) High-frequency gene transfer from the chloroplast genome to the nucleus. Proc Natl Acad Sci U S A 100:8828–8833. https://doi.org/10.1073/pnas.1430924100
Nowack ECM, Vogel H, Groth M, Grossman AR, Melkonian M, Glöckner G (2011) Endosymbiotic gene transfer and transcriptional regulation of transferred genes in Paulinella chromatophora. Mol Biol Evol 28:407–422. https://doi.org/10.1093/molbev/msq209
Curtis BA, Tanifuji G, Maruyama S, Gile GH, Hopkins JF, Eveleigh RJM, Nakayama T, Malik SB, Onodera NT, Slamovits CH et al (2012) Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature 492:59–65. https://doi.org/10.1038/nature11681
Burki F, Imanian B, Hehenberger E, Hirakawa Y, Maruyama S, Keeling PJ (2014) Endosymbiotic gene transfer in tertiary plastid-containing dinoflagellates. Eukaryot Cell 13:246–255. https://doi.org/10.1128/EC.00299-13
Ponce-Toledo RI, Moreira D, López-García P, Deschamps P (2018) Secondary plastids of euglenids and chlorarachniophytes function with a mix of genes of red and green algal ancestry. Mol Biol Evol 35:2198–2204. https://doi.org/10.1093/molbev/msy121
Sarai C, Tanifuji G, Nakayama T, Kamikawa R, Takahashi K, Yazaki E, Matsuo E, Miyashita H, Ishida KI, Iwataki M et al (2020) Dinoflagellates with relic endosymbiont nuclei as models for elucidating organellogenesis. Proc Natl Acad Sci U S A 117:5364–5375. https://doi.org/10.1073/pnas.1911884117
Kelly S (2021) The economics of organellar gene loss and endosymbiotic gene transfer. Genome Biol 22:345. https://doi.org/10.1186/s13059-021-02567-w
Burki F (2017) The convoluted evolution of eukaryotes with complex plastids, 1st edn. Elsevier Ltd. https://doi.org/10.1016/bs.abr.2017.06.001
Sibbald SJ, Archibald JM (2020) Genomic insights into plastid evolution. Genome Biol Evol 12:978–990. https://doi.org/10.1093/GBE/EVAA096
Goksøyr J (1967) Evolution of eucaryotic cells. Nature 214:1967
Weeden NF (1981) Genetic and biochemical implications of the endosymbiotic origin of the chloroplast. J Mol Evol 17:133–139. https://doi.org/10.1007/BF01733906
Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci U S A 99:12246–12251. https://doi.org/10.1073/pnas.182432999
Stegemann S, Bock R (2006) Experimental reconstruction of functional gene transfer from the tobacco plastid genome to the nucleus. Plant Cell 18:2869–2878. https://doi.org/10.1105/tpc.106.046466
Lister DL, Bateman JM, Purton S, Howe CJ (2003) DNA transfer from chloroplast to nucleus is much rarer in Chlamydomonas than in tobacco. Gene 316:33–38. https://doi.org/10.1016/S0378-1119(03)00754-6
Marin B, Nowack ECM, Melkonian M (2005) A plastid in the making: evidence for a second primary endosymbiosis. Protist 156:425–432. https://doi.org/10.1016/j.protis.2005.09.001
Zhang R, Nowack ECM, Price DC, Bhattacharya D, Grossman AR (2017) Impact of light intensity and quality on chromatophore and nuclear gene expression in Paulinella chromatophora, an amoeba with nascent photosynthetic organelles. Plant J 90:221–234. https://doi.org/10.1111/tpj.13488
Nowack ECM, Price DC, Bhattacharya D, Singer A, Melkonian M, Grossman AR (2016) Gene transfers from diverse bacteria compensate for reductive genome evolution in the chromatophore of Paulinella chromatophora. Proc Natl Acad Sci U S A 113:12214–12219. https://doi.org/10.1073/pnas.1608016113
Burki F, Flegontov P, Oborník M, Cihlář J, Pain A, Lukeš J, Keeling PJ (2012) Re-evaluating the green versus red signal in eukaryotes with secondary plastid of red algal origin. Genome Biol Evol 4:626–635. https://doi.org/10.1093/gbe/evs049
Deschamps P, Moreira D (2012) Reevaluating the green contribution to diatom genomes. Genome Biol Evol 4:683–688. https://doi.org/10.1093/gbe/evs053
Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D (2009) Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science (80- ) 324:1724–1726. https://doi.org/10.1126/science.1172983
Woehle C, Dagan T, Martin WF, Gould SB (2011) Red and problematic green phylogenetic signals among thousands of nuclear genes from the photosynthetic and apicomplexa-related Chromera velia. Genome Biol Evol 3:1220–1230. https://doi.org/10.1093/gbe/evr100
Minge MA, Shalchian-Tabrizi K, Tørresen OK, Takishita K, Probert I, Inagaki Y, Klaveness D, Jakobsen KS (2010) A phylogenetic mosaic plastid proteome and unusual plastid-targeting signals in the green-colored dinoflagellate Lepidodinium chlorophorum. BMC Evol Biol 10. https://doi.org/10.1186/1471-2148-10-191
Hehenberger E, Burki F, Kolisko M, Keeling PJ (2016) Functional relationship between a dinoflagellate host and its diatom endosymbiont. Mol Biol Evol 33:2376–2390. https://doi.org/10.1093/molbev/msw109
Shih PM, Matzke NJ (2013) Primary endosymbiosis events date to the later Proterozoic with cross-calibrated phylogenetic dating of duplicated ATPase proteins. Proc Natl Acad Sci U S A 110:12355–12360. https://doi.org/10.1073/pnas.1305813110
Dagan T, Roettger M, Stucken K, Landan G, Koch R, Major P, Gould SB, Goremykin VV, Rippka R, De Marsac NT et al (2013) Genomes of stigonematalean cyanobacteria (subsection V) and the evolution of oxygenic photosynthesis from prokaryotes to plastids. Genome Biol Evol 5:31–44. https://doi.org/10.1093/gbe/evs117
Price DC, Chan CX, Yoon HS, Yang EC, Qiu H, Weber APM, Schwacke R, Gross J, Blouin NA, Lane C et al (2012) Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science (80- ) 335:843–847. https://doi.org/10.1126/science.1213561
Delaye L, Valadez-Cano C, Pérez-Zamorano B (2016) How really ancient is Paulinella chromatophora? PLoS Curr 8. https://doi.org/10.1371/currents.tol.e68a099364bb1a1e129a17b4e06b0c6b
Huang J, Yue J (2013) Horizontal gene transfer in the evolution of photosynthetic eukaryotes. J Syst Evol 51:13–29. https://doi.org/10.1111/j.1759-6831.2012.00237.x
Ma J, Wang S, Zhu X, Sun G, Chang G, Li L, Hu X, Zhang S, Zhou Y, Song CP et al (2022) Major episodes of horizontal gene transfer drove the evolution of land plants. Mol Plant 15:857–871. https://doi.org/10.1016/j.molp.2022.02.001
Price DC, Goodenough UW, Roth R, Lee JH, Kariyawasam T, Mutwil M, Ferrari C, Facchinelli F, Ball SG, Cenci U et al (2019) Analysis of an improved Cyanophora paradoxa genome assembly. DNA Res 26:287–299. https://doi.org/10.1093/dnares/dsz009
Cenci U, Bhattacharya D, Weber APM, Colleoni C, Subtil A, Ball SG (2017) Biotic host–pathogen interactions as major drivers of plastid endosymbiosis. Trends Plant Sci 22:316–328. https://doi.org/10.1016/j.tplants.2016.12.007
Bodył A (2018) Did some red alga-derived plastids evolve via kleptoplastidy? A hypothesis. Biol Rev 93:201–222. https://doi.org/10.1111/brv.12340
Gast RJ, Moran DM, Dennett MR, Caron DA (2007) Kleptoplasty in an Antarctic dinoflagellate: caught in evolutionary transition? Environ Microbiol 9:39–45. https://doi.org/10.1111/j.1462-2920.2006.01109.x
Sellers CG, Gast RJ, Sanders RW (2014) Selective feeding and foreign plastid retention in an Antarctic dinoflagellate. J Phycol 50:1081–1088. https://doi.org/10.1111/jpy.12240
Hehenberger E, Gast RJ, Keeling PJ (2019) A kleptoplastidic dinoflagellate and the tipping point between transient and fully integrated plastid endosymbiosis. Proc Natl Acad Sci U S A 116:17934–17942. https://doi.org/10.1073/pnas.1910121116
Larkum AWD, Lockhart PJ, Howe CJ (2007) Shopping for plastids. Trends Plant Sci 12:189–195. https://doi.org/10.1016/j.tplants.2007.03.011
Keeling PJ (2013) The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu Rev Plant Biol 64:583–607. https://doi.org/10.1146/annurev-arplant-050312-120144
Facchinelli F, Pribil M, Oster U, Ebert NJ, Bhattacharya D, Leister D, Weber APM (2013) Proteomic analysis of the Cyanophora paradoxa muroplast provides clues on early events in plastid endosymbiosis. Planta 237:637–651. https://doi.org/10.1007/s00425-012-1819-3
Terashima M, Specht M, Naumann B, Hippler M (2010) Characterizing the anaerobic response of Chlamydomonas reinhardtii by quantitative proteomics. Mol Cell Proteomics 9:1514–1532. https://doi.org/10.1074/mcp.M900421-MCP200
van Wijk KJ, Baginsky S (2011) Plastid proteomics in higher plants: current state and future goals. Plant Physiol 155:1578–1588. https://doi.org/10.1104/pp.111.172932
Hopkins JF, Spencer DF, Laboissiere S, Neilson JAD, Eveleigh RJM, Durnford DG, Gray MW, Archibald JM (2012) Proteomics reveals plastid- and periplastid-targeted proteins in the chlorarachniophyte alga Bigelowiella natans. Genome Biol Evol 4:1391–1406. https://doi.org/10.1093/gbe/evs115
Schober AF, Río Bártulos C, Bischoff A, Lepetit B, Gruber A, Kroth PG (2019) Organelle studies and proteome analyses of mitochondria and plastids fractions from the diatom Thalassiosira pseudonana. Plant Cell Physiol 60:1811–1828. https://doi.org/10.1093/pcp/pcz097
Qiu H, Price DC, Weber APM, Facchinelli F, Yoon HS, Bhattacharya D (2013) Assessing the bacterial contribution to the plastid proteome. Trends Plant Sci 18:680–687. https://doi.org/10.1016/j.tplants.2013.09.007
Singer A, Poschmann G, Mühlich C, Valadez-Cano C, Hänsch S, Hüren V, Rensing SA, Stühler K, Nowack ECM (2017) Massive protein import into the early-evolutionary-stage photosynthetic organelle of the amoeba Paulinella chromatophora. Curr Biol 27:2763–2773.e5. https://doi.org/10.1016/j.cub.2017.08.010
Novák Vanclová AMG, Zoltner M, Kelly S, Soukal P, Záhonová K, Füssy Z, Ebenezer TGE, Lacová Dobáková E, Eliáš M, Lukeš J et al (2020) Metabolic quirks and the colourful history of the Euglena gracilis secondary plastid. New Phytol 225:1578–1592. https://doi.org/10.1111/nph.16237
Karnkowska A, Yubuki N, Maruyama M, Yamaguchi A, Kashiyama Y, Suzaki T, Keeling PJ, Hampl V, Leander BS (2023) Euglenozoan kleptoplasty illuminates the early evolution of photoendosymbiosis. Proc Natl Acad Sci 120:e2220100120. https://doi.org/10.1073/pnas.2220100120
Sørensen MES, Zlatogursky VV, Onuţ-Brännström I, Walraven A, Foster RA, Burki F (2023) A novel kleptoplastidic symbiosis revealed in the marine centrohelid Meringosphaera with evidence of genetic integration. Curr Biol 33:3571–3584.e6. https://doi.org/10.1016/j.cub.2023.07.017
Reyes-Prieto A, Hackett JD, Soares MB, Bonaldo MF, Bhattacharya D (2006) Cyanobacterial contribution to algal nuclear genomes is primarily limited to plastid functions. Curr Biol 16:2320–2325. https://doi.org/10.1016/j.cub.2006.09.063
Reyes-Prieto A, Moustafa A, Bhattacharya D (2008) Multiple genes of apparent algal origin suggest ciliates may once have been photosynthetic. Curr Biol 18:956–962. https://doi.org/10.1016/j.cub.2008.05.042
Stiller JW, Huang J, Ding Q, Tian J, Goodwillie C (2009) Are algal genes in nonphotosynthetic protists evidence of historical plastid endosymbioses? BMC Genomics 10:484. https://doi.org/10.1186/1471-2164-10-484
Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RHY, Aerts A, Arredondo FD, Baxter L, Bensasson D, Beynon JL et al (2006) Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science (80- ) 313:1261–1266. https://doi.org/10.1126/science.1128796
Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: Euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46:347–366. https://doi.org/10.1111/j.1550-7408.1999.tb04614.x
Yamada N, Sym SD, Horiguchi T (2017) Identification of highly divergent diatom-derived chloroplasts in dinoflagellates, including a description of Durinskia kwazulunatalensis sp. nov. (Peridiniales, Dinophyceae). Mol Biol Evol 34:1335–1351. https://doi.org/10.1093/molbev/msx054
Holt CC, Hehenberger E, Tikhonenkov DV, Jacko-Reynolds VKL, Okamoto N, Cooney EC, Irwin NAT, Keeling PJ (2023) Multiple parallel origins of parasitic Marine Alveolates. Nat Commun 14. https://doi.org/10.1038/s41467-023-42807-0
Xu P, Widmer G, Wang Y, Ozaki LS, Alves JM, Serrano MG, Pulu D, Manque P, Akiyoshi D, Mackey AJ et al (2004) The genome of Cryptosporidium hominis. Nature 431:1107–1112. https://doi.org/10.1038/nature02977
Mathur V, Salomaki ED, Wakeman KC, Na I, Kwong WK, Kolisko M, Keeling PJ (2023) Reconstruction of plastid proteomes of apicomplexans and close relatives reveals the major evolutionary outcomes of cryptic plastids. Mol Biol Evol 40:1–12. https://doi.org/10.1093/molbev/msad002
Gornik SG, Febrimarsa CAM, MacRae JI, Ramaprasad A, Rchiad Z, McConville MJ, Bacic A, McFadden GI, Pain A et al (2015) Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proc Natl Acad Sci U S A 112:5767–5772. https://doi.org/10.1073/pnas.1423400112
John U, Lu Y, Wohlrab S, Groth M, Janouškovec J, Kohli GS, Mark FC, Bickmeyer U, Farhat S, Felder M et al (2019) An aerobic eukaryotic parasite with functional mitochondria that likely lacks a mitochondrial genome. Sci Adv 5:1–12. https://doi.org/10.1126/sciadv.aav1110
Janouskovec J, Gavelis GS, Burki F, Dinh D, Bachvaroff TR, Gornik SG, Bright KJ, Imanian B, Strom SL, Delwiche CF et al (2017) Major transitions in dinoflagellate evolution unveiled by phylotranscriptomics. Proc Natl Acad Sci U S A 114:E171–E180. https://doi.org/10.1073/pnas.1614842114
Azuma T, Pánek T, Tice AK, Kayama M, Kobayashi M, Miyashita H, Suzaki T, Yabuki A, Brown MW, Kamikawa R (2022) An enigmatic stramenopile sheds light on early evolution in Ochrophyta plastid organellogenesis. Mol Biol Evol 39:1–12. https://doi.org/10.1093/molbev/msac065
Acknowledgments
EH would like to acknowledge support from the Czech Academy of Sciences (Lumina Quaeruntur grant LQ200962204). FB would like to acknowledge support from Science for Life Laboratory, the Swedish Research Council VR (2021-04055), and the European Research Council (ERC consolidator grant 101044505).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Hehenberger, E., Burki, F. (2024). The Extent, Role, and Timing of Endosymbiotic Gene Transfer in Plastids. In: Schwartzbach, S.D., Kroth, P.G., Oborník, M. (eds) Endosymbiotic Organelle Acquisition. Springer, Cham. https://doi.org/10.1007/978-3-031-57446-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-57446-7_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-57444-3
Online ISBN: 978-3-031-57446-7
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)