Skip to main content

A Mathematical Modeling of BFRP Laminated Composite Double-Chamber Mufflers Based Acoustic Transmission Loss Optimization

  • Conference paper
  • First Online:
Proceedings of the International Conference of Steel and Composite for Engineering Structures (ICSCES 2023)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 486))

  • 51 Accesses

Abstract

The acoustic muffler development depends on optimizing its volume for high performance, it is of great importance in the industrial field to obtain a reduction in duct noise economically and efficiently. The main aim of this work is to optimize analytically the acoustic transmission loss (\({\text{TL}}\)) of the Basalt Fiber Reinforced Polymer laminated composite Double-Chamber Mufflers (BFRP-CDCM) because \({\text{TL}}\) is an essential characteristic of the muffler and is not based on the source or the termination impedances. The power transmission coefficient (\({\text{PTC}}\)) and the \({\text{TL}}\) of a muffler will be calculated. The method used to optimize the length of the acoustic muffler is the genetic algorithms (\({\text{GA}}\)) method. The sound pressure data is obtained from the exact solution of the governing equations of the muffler model in MatlabĀ® software. Many mathematical simulations were performed of varying muffler lengths at multiple frequency ranges simultaneously. The results indicate that the \({\text{TL}}\) is optimized at the desired zone of frequency. This research supports the quick and active approach towards optimal design for BFRP-CDCM in a space constrains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altabey, W.A., Kouritem, S.A., Al-Moghazy, M.A.: A new diagnostic system for damage monitoring of BFRP plates, e-Prime - advances in electrical engineering. Electron. Energy 5, 100258 (2023). https://doi.org/10.1016/j.prime.2023.100258

    ArticleĀ  Google ScholarĀ 

  2. Altabey, W.A., Noori, M., Wu, Z., Al-Moghazy, M.A., Kouritem, S.A.: A deep-learning approach for predicting water absorption in composite pipes by extracting the materialā€™s dielectric features. Eng. Appl. Artif. Intell. 121, 105963 (2023). https://doi.org/10.1016/j.engappai.2023.105963

    ArticleĀ  Google ScholarĀ 

  3. Altabey, W.A., Kouritem, S.A., Abouheaf, M.I., Nahas, N.: A deep learning-based approach for pipeline cracks monitoring. In: IEEE Conference, 2nd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME-2022), Maldives (2022). https://doi.org/10.1109/ICECCME55909.2022.9987998

  4. Khatir, A., Capozucca, R., Khatir, S., Magagnini, E.: Vibration-based crack prediction on a beam model using hybrid butterfly optimization algorithm with artificial neural network. Front. Struct. Civ. Eng. 16(8), 976ā€“989 (2022)

    ArticleĀ  Google ScholarĀ 

  5. Khatir, A., et al.: A new hybrid PSO-YUKI for double cracks identification in CFRP cantilever beam. Compos. Struct. 311, 116803 (2023). https://doi.org/10.1016/j.compstruct.2023.116803

  6. Tracor Inc. Guidelines on Noise, American Petroleum Institute, Washington D.C, p. 55 (1973)

    Google ScholarĀ 

  7. Prasad, M.G.: A note on acoustic plane waves in a uniform pipe with mean flow. J. Sound Vibr. 95(2), 284ā€“290 (1984)

    ArticleĀ  Google ScholarĀ 

  8. Altabey, W.A.: An exact solution for acoustic simulation based transmission loss optimization of double-chamber silencer. Sound Vibr. 54, 215ā€“224 (2020). https://doi.org/10.32604/SV.2020.011516

  9. Altabey, W.A., Noori, M., Wu, Z., Al-Moghazy, M.A., Kouritem, S.A.: Studying acoustic behavior of BFRP laminated composite in dual-chamber muffler application using deep learning algorithm. Materials 15(22), 807 (2022). https://doi.org/10.3390/ma15228071

    ArticleĀ  Google ScholarĀ 

  10. Bernhard, R.J.: Shape optimization of reactive mufflers. Noise Control Eng. J. 27(1), 10ā€“17 (1986)

    ArticleĀ  Google ScholarĀ 

  11. Yeh, L.J., Chiu, M.C., Lai, G.J.: Computer aided design on single expansion muffler under space constraints. In: Proceedings of the 19th National Conference on Mechanical Engineering, The Chinese Society of Mechanical Engineers, Hu-wei, Taiwan, C7, pp. 625ā€“633 (2002)

    Google ScholarĀ 

  12. Airaksinen, T., Heikkola, E.: Multiobjective muffler shape optimization with hybrid acoustics modeling. J. Acoust. Soc. Am. 130, 1359 (2011). https://doi.org/10.1121/1.3621119

    ArticleĀ  Google ScholarĀ 

  13. Yu, X., Tong, Y., Pan, J., Cheng, L.: Sub-chamber optimization for silencer design. J. Sound Vibr. 351, 57ā€“67 (2015). https://doi.org/10.1016/j.jsv.2015.04.022

    ArticleĀ  Google ScholarĀ 

  14. Guo, R., Tang, W.: Transfer matrix methods for sound attenuation in resonators with perforated intruding inlets. J. Appl. Acoust. 116, 14ā€“23 (2017). https://doi.org/10.1016/j.apacoust.2016.09.012

    ArticleĀ  Google ScholarĀ 

  15. Yu, X., Cheng, L.: Duct noise attenuation using reactive silencer with various internal configurations. J. Sound Vibr. 335, 229ā€“244 (2015)

    ArticleĀ  Google ScholarĀ 

  16. Oh, K.S., Lee, J.W.: Topology optimization for enhancing the acoustical and thermal characteristics of acoustic devices simultaneously. J. Sound Vibr. 401, 54ā€“75 (2017). https://doi.org/10.1016/j.jsv.2017.04.027

    ArticleĀ  Google ScholarĀ 

  17. Fonseca De Lima, K., Lenzi, A., Barbieri, R.: The study of reactive silencers by shape and parametric optimization techniques. J. Appl. Acoust. 72, 142ā€“150 (2011)

    ArticleĀ  Google ScholarĀ 

  18. Capozucca, R., Khatir, A., Magagnini, E.: Experiences on anchorage systems for FRP rods. In: Capozucca, R., Khatir, S., Milani, G. (eds.) Proceedings of the International Conference of Steel and Composite for Engineering Structures. ICSCES 2022. LNCE, vol. 317, pp. 48ā€“58. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-24041-6_4

  19. Lee, J.W., Jang, G.W.: Topology design of reactive mufflers for enhancing their acoustic attenuation performance and flow characteristics simultaneously. Int. J. Numer. Methods Eng. 91, 552ā€“570 (2012)

    ArticleĀ  Google ScholarĀ 

  20. Lee, J.W.: Optimal topology of reactive muffler achieving target transmission loss values: design and experiment. J. Appl. Acoust. 88, 104ā€“113 (2015)

    ArticleĀ  Google ScholarĀ 

  21. Achouri, F., Khatir, A., Smahi, Z., Capozucca, R., Ouled Brahim, A.: Structural health monitoring of beam model based on swarm intelligence-based algorithms and neural networks employing FRF. J. Braz. Soc. Mech. Sci. Eng. 45(12), 621 (2023). https://doi.org/10.1007/s40430-023-04525-y

    ArticleĀ  Google ScholarĀ 

  22. Oh, K.S., Lee, J.W.: Two-step design process for optimal suction muffler in a reciprocating compressor. J. Mech. Sci. Technol. 29, 269ā€“278 (2015)

    ArticleĀ  Google ScholarĀ 

  23. Yedeg, E.L., Wadbro, E., Berggren, M.: Interior layout topology optimization of a reactive muffler. J. Struct. Multidisc. Optim. 53, 645ā€“656 (2016)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  24. Jang, G.W., Lee, J.W.: Topology optimization of internal partitions in a flow-reversing chamber muffler for noise reduction. J. Struct. Multidisc. Optim. 55, 2181ā€“2196 (2017)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  25. Khatir, A., Capozucca, R., Magagnini, E., Khatir, S., Bettucci, E.: Structural health monitoring for RC beam based on RBF neural network using experimental modal analysis. In: Capozucca, R., Khatir, S., Milani, G. (eds.) Proceedings of the International Conference of Steel and Composite for Engineering Structures. ICSCES 2022. LNCE, vol. 317, pp. 82ā€“92. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-24041-6_7

  26. Lee, J.K., Oh, S.K., Lee, J.W.: Methods for evaluating in-duct noise attenuation performance in a muffler design problem. J. Sound Vibr. 464, 114982 (2020). https://doi.org/10.1016/j.jsv.2019.114982

    ArticleĀ  Google ScholarĀ 

  27. Selameta, A., Deniab, F.D., Besa, A.J.: Acoustic behavior of circular dual-chamber mufflers. J. Sound Vibr. 265, 967ā€“985 (2003)

    ArticleĀ  Google ScholarĀ 

  28. Selamet, A., Ji, Z.L.: Acoustic attenuation performance of circular expansion chambers with extended inlet/outlet. J. Sound Vibr. 223, 197ā€“212 (1999)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wael A. Altabey .

Editor information

Editors and Affiliations

Appendix: The Table of Acronyms and Mathematical Notation

Appendix: The Table of Acronyms and Mathematical Notation

\({\text{B }}/{\text{L}}\)

Muffler length ratio

\({\text{B }}\left( {\text{m}} \right)\)

Muffler Length

\({\text{L }}\left( {\text{m}} \right)\)

Length of chamber

\({\text{Freq}}.{ }\left( {{\text{Hz}}} \right)\)

Frequency

\({\text{TL}}\)

Transmission Loss

\({\text{PTC}}\)

power transmission coefficient

\({\text{GA}}\)

genetic algorithms

\(A_{i}\)

standing pressure propagating wave amplitude

\(B_{i}\)

reflected pressure propagating wave amplitude

\(P_{i}\)

standing pressure

\(P_{r}\)

reflected pressure

\(j\)

junction number

\(K\)

wavenumber ratio

\(k\)

the wavenumber

\(\omega\)

angular frequency

\(c\)

sound speed

\(k_{b}\)

bending wavenumber

\(m\)

area ratio

\(D_{ij}\)

bending stiffness

\(\overline{Q}_{ij}\)

transformed reduced stiffness coefficients

\(E_{x}\), \(E_{y}\),\(E_{z}\)

The elastic modulus in the ā€˜xā€™, ā€˜yā€™ and ā€˜zā€™ directions

\(G_{xy}\), \(G_{xz}\),\(G_{yz}\)

The shear modulus in the ā€˜xyā€™, ā€˜xzā€™ and ā€˜yzā€™ plane

\(\nu_{xy}\), \(\nu_{xz}\),\(\nu_{yz}\)

The Poisson's ratio in the ā€˜xyā€™, ā€˜xzā€™ and ā€˜yzā€™ plane

\(i\)

the imaginary unit

\(\mu\)

the fluid density

FRP

fiber reinforced polymer

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Altabey, W.A., Noori, M. (2024). A Mathematical Modeling of BFRP Laminated Composite Double-Chamber Mufflers Based Acoustic Transmission Loss Optimization. In: Benaissa, B., Capozucca, R., Khatir, S., Milani, G. (eds) Proceedings of the International Conference of Steel and Composite for Engineering Structures. ICSCES 2023. Lecture Notes in Civil Engineering, vol 486. Springer, Cham. https://doi.org/10.1007/978-3-031-57224-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57224-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57223-4

  • Online ISBN: 978-3-031-57224-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics