Skip to main content

Exploring Concurrent Multi-materials and Multiscale Hybrid Topology Optimization for Lightweight Porous Gripping Mechanism

  • Conference paper
  • First Online:
Proceedings of the International Conference of Steel and Composite for Engineering Structures (ICSCES 2023)

Abstract

Our research focuses on optimizing soft robotic gripper designs by employing an innovative hybrid topology approach with the aim of creating lightweight and porous grippers. Addressing the complex challenge of multiscale, multilateral topology optimization, we use a hybrid technique that combines SIMP (Solid Isotropic Material with Penalization) for macroscale optimization and MSB (Metaheuristic Structural Binary Distribution) for microscale optimization. At the microscale, our efforts are directed towards enhancing Young's modulus for weight reduction, considering orthotropic materials. Numerical examples in our study illustrate the adaptability of the microscale design to spatial configurations within both macro and microstructures. Various scenarios in macrostructure design demonstrate an advanced approach to strain energy distribution at the macroscale. Our innovative hybrid approach, integrating SIMP as for the macro-scale and MSB for micro-scale design, enables optimal designs while significantly reducing computational costs. This design methodology has the potential to yield novel, durable, lightweight, and porous soft robotic grippers with exceptional elastic flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al Ali, M., Shimoda, M.: Hygrally activated displacement inverter using a multiphysics multiscale topology optimization with considering evaporation. Struct. Multidiscip. Optim. 66, 1–16 (2023). https://doi.org/10.1007/s00158-023-03679-6

    Article  MathSciNet  Google Scholar 

  2. Tavakoli, M., Batista, R., Sgrigna, L.: The UC softhand: Light weight adaptive bionic hand with a compact twisted string actuation system. In: Actuators (2015)

    Google Scholar 

  3. Al-Rubaiai, M., Qi, X., Frank, Z., et al.: Nonlinear modeling and control of polyvinyl chloride (PVC) gel actuators. IEEE/ASME Trans. Mechatron. (2022). https://doi.org/10.1109/TMECH.2022.3175445

  4. Al-Rubaiai, M., Tsuruta, R., Gandhi, U., Tan, X.: Distributed measurement of deformation magnitude and location with a pair of soft sensors. Adv. Eng. Mater. 2101146 (2022). https://doi.org/10.1002/adem.202101146

  5. Al-Rubaiai, M.: Enabling Soft robotic systems: new solutions to stiffness tuning, sensing, and actuation control. Michigan State University (2021)

    Google Scholar 

  6. Al Ali, M., Shimoda, M.: On multiphysics concurrent multiscale topology optimization for designing porous heat-activated compliant mechanism under convection for additive manufacture. Eng. Struct. 294, 116756 (2023). https://doi.org/10.1016/j.engstruct.2023.116756

    Article  Google Scholar 

  7. Shimoda, M., Hikasa, M., Al Ali, M.: Micropore shape optimization of porous laminated shell structures. Addit. Manuf. 69, 103530 (2023). https://doi.org/10.1016/j.addma.2023.103530

    Article  Google Scholar 

  8. Al Ali, M., Shimoda, M.: On concurrent multiscale topology optimization for porous structures under hygro-thermo-elastic multiphysics with considering evaporation. Int. J. Numer. Methods Eng. 124, 3219–3249 (2023). https://doi.org/10.1002/nme.7245

    Article  MathSciNet  Google Scholar 

  9. Al Ali, M., Shimoda, M., Benaissa, B., Kobayashi, M.: Non-parametric optimization for lightweight and high heat conductive structures under convection using metaheuristic structure binary-distribution method. Appl. Therm. Eng. 121124 (2023)

    Google Scholar 

  10. Tsukihara, R., Shimoda, M.: Free material orientation design for tailoring vibration eigenvalues of CFRP shell structures. Trans. JSME 87 (2021). (in Japanese)

    Google Scholar 

  11. Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988). https://doi.org/10.1016/0045-7825(88)90086-2

    Article  MathSciNet  Google Scholar 

  12. Davoodi, E., Montazerian, H., Mirhakimi, A.S., et al.: Additively manufactured metallic biomaterials. Bioact. Mater. (2021)

    Google Scholar 

  13. Hassani, B., Hinton, E.: A review of homogenization and topology optimization I—homogenization theory for media with periodic structure. Comput. Struct. 69, 707–717 (1998). https://doi.org/10.1016/S0045-7949(98)00131-X

    Article  Google Scholar 

  14. Ananthasuresh, G.K., Kota, S., Gianchandani, Y.: Systematic synthesis of microcompliant mechanisms-preliminary results. In: Proceedins of the 3rd National Conference of Applied Mechanics and Robotics (1993)

    Google Scholar 

  15. Nishiwaki, S., Frecker, M.I., Min, S., Kikuchi, N.: Topology optimization of compliant mechanisms using the homogenization method. Int. J. Numer. Methods Eng. 42, 535–559 (1998)

    Article  MathSciNet  Google Scholar 

  16. Sigmund, O.: On the design of compliant mechanisms using topology optimization. J. Struct. Mech. 25, 493–524 (1997)

    Google Scholar 

  17. Sigmund, O., Torquato, S.: Design of smart composite materials using topology optimization. Smart Mater. Struct. 8, 365 (1999)

    Article  Google Scholar 

  18. Huang, J., Ge, W., Yang, F.: Topology optimization of the compliant mechanism for shape change of airfoil leading edge (P). ACTA Aeronaut. Astronaut. Sin A B- 28, 988 (2007)

    Google Scholar 

  19. Maute, K., Frangopol, D.M.: Reliability-based design of MEMS mechanisms by topology optimization. Comput. Struct. 81, 813–824 (2003). https://doi.org/10.1016/S0045-7949(03)00008-7

    Article  Google Scholar 

  20. Irfan Shirazi, M., Khatir, S., Benaissa, B., et al.: Damage assessment in laminated composite plates using modal Strain Energy and YUKI-ANN algorithm. Compos. Struct. 303,116272 (2023). https://doi.org/10.1016/j.compstruct.2022.116272

  21. Benaissa, B., Hocine, N.A., Khatir, S., et al.: YUKI Algorithm and POD-RBF for elastostatic and dynamic crack identification. J. Comput. Sci. 55, 101451 (2021)

    Article  Google Scholar 

  22. Amoura, N., Benaissa, B., Al Ali, M., Khatir, S.: Deep neural network and YUKI Algorithm for inner damage characterization based on elastic boundary displacement. In: Capozucca, R., Khatir, S., Milani, G. (eds.) ICSCES 2022. LNCE, vol. 317, pp. 220–233. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-24041-6_18

    Chapter  Google Scholar 

  23. Khatir, A., Capozucca, R., Khatir, S., et al.: A new hybrid PSO-YUKI for double cracks identification in CFRP cantilever beam. Compos. Struct. 311, 116803 (2023). https://doi.org/10.1016/j.compstruct.2023.116803

    Article  Google Scholar 

  24. Khatir, A., Capozucca, R., Khatir, S., Magagnini, E.: Vibration-based crack prediction on a beam model using hybrid butterfly optimization algorithm with artificial neural network. Front. Struct. Civ. Eng. 16(8), 976–989 (2022). https://doi.org/10.1007/s11709-022-0840-2

    Article  Google Scholar 

  25. Khatir, A., Capozucca, R., Magagnini, E., Khatir, S., Bettucci, E.: Structural health monitoring for rc beam based on rbf neural network using experimental modal analysis. In: Capozucca, R., Khatir, S., Milani, G. (eds.) ICSCES 2022. LNCE, vol. 317, pp. 82–92. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-24041-6_7

    Chapter  Google Scholar 

  26. Thomsen, J.: Topology optimization of structures composed of one or two materials. Struct. Optim. 5, 108–115 (1992). https://doi.org/10.1007/BF01744703

    Article  Google Scholar 

  27. Yin, L., Ananthasuresh, G.K.: Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme. Struct. Multidiscip. Optim. 23, 49–62 (2001)

    Article  Google Scholar 

  28. Luo, Z., Tong, L., Luo, J., et al.: Design of piezoelectric actuators using a multiphase level set method of piecewise constants. J. Comput. Phys. 228, 2643–2659 (2009)

    Article  MathSciNet  Google Scholar 

  29. Sigmund, O., Torquato, S.: Design of materials with extreme thermal expansion using a three-phase topology optimization method. J. Mech. Phys. Solids 45, 1037–1067 (1997). https://doi.org/10.1016/S0022-5096(96)00114-7

    Article  MathSciNet  Google Scholar 

  30. Gibiansky, L.V., Sigmund, O.: Multiphase composites with extremal bulk modulus. J. Mech. Phys. Solids 48, 461–498 (2000)

    Article  MathSciNet  Google Scholar 

  31. Alonso, C., Ansola, R., Querin, O.M.: Topology synthesis of multi-material compliant mechanisms with a sequential element rejection and admission method. Finite Elem. Anal. Des. 85, 11–19 (2014)

    Article  Google Scholar 

  32. Zhang, W., Song, J., Zhou, J., et al.: Topology optimization with multiple materials via moving morphable component (MMC) method. Int. J. Numer. Methods Eng. 113, 1653–1675 (2018)

    Article  MathSciNet  Google Scholar 

  33. Zuo, W., Saitou, K.: Multi-material topology optimization using ordered SIMP interpolation. Struct. Multidiscip. Optim. 55, 477–491 (2017)

    Article  MathSciNet  Google Scholar 

  34. Tong, X., Ge, W., Zhang, Y., Zhao, Z.: Topology design and analysis of compliant mechanisms with composite laminated plates. J. Mech. Sci. Technol. 33, 613–620 (2019)

    Article  Google Scholar 

  35. Guest, J.K.: Topology optimization with multiple phase projection. Comput. Methods Appl. Mech. Eng. 199, 123–135 (2009)

    Article  MathSciNet  Google Scholar 

  36. Al, A.M., Shimoda, M.: Toward multiphysics multiscale concurrent topology optimization for lightweight structures with high heat conductivity and high stiffness using MATLAB. Struct. Multidiscip. Optim. 65, 1–26 (2022)

    MathSciNet  Google Scholar 

  37. Bendsøe, M.P., Sigmund, O.: Material interpolation schemes in topology optimization. Arch. Appl. Mech. 69, 635–654 (1999). https://doi.org/10.1007/s004190050248

    Article  Google Scholar 

  38. Sigmund, O., Petersson, J.: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct. Optim. 16, 68–75 (1998). https://doi.org/10.1007/BF01214002

    Article  Google Scholar 

  39. Achouri, F., Khatir, A., Smahi, Z., Capozucca, R., Ouled Brahim, A.: Structural health monitoring of beam model based on swarm intelligence-based algorithms and neural networks employing FRF. J. Braz. Soc. Mech. Sci. Eng. 45(12), 621 (2023). https://doi.org/10.1007/s40430-023-04525-y

    Article  Google Scholar 

  40. Khatir, A., Tehami, M.: Finite element analysis of local buckling of steel-concrete continuous composite beams. In: Proceeding of the 2015 Congress on Advanced in Structural Engineering and Mechanics (ASEM15) (2015)

    Google Scholar 

  41. Yan, S., Wang, F., Sigmund, O.: On the non-optimality of tree structures for heat conduction. Int. J. Heat Mass Transf. 122, 660–680 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.114m

    Article  Google Scholar 

  42. Ali, M., Shimoda, M.: Toward concurrent multiscale topology optimization for high heat conductive and light weight structure. In: Koshizuka, S. (ed.) Conference: 15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII), pp 1–12. CIMNE, Yokohama (2022)

    Google Scholar 

  43. Dzierżanowski, G.: On the comparison of material interpolation schemes and optimal composite properties in plane shape optimization. Struct. Multidiscip. Optim. 46, 693–710 (2012). https://doi.org/10.1007/s00158-012-0788-2

    Article  MathSciNet  Google Scholar 

  44. Fujioka, M., Shimoda, M., Al Ali, M.: Concurrent shape optimization of a multiscale structure for controlling macrostructural stiffness. Struct. Multidiscip. Optim. 65, 1–27 (2022). https://doi.org/10.1007/s00158-022-03304-y

    Article  MathSciNet  Google Scholar 

  45. Zhang, Y., Xiao, M., Li, H., Gao, L.: Topology optimization of material microstructures using energy-based homogenization method under specified initial material layout. J. Mech. Sci. Technol. 33, 677–693 (2019)

    Article  Google Scholar 

  46. Shimoda, M., Umemura, M., Al Ali, M., Tsukihara, R.: Shape and topology optimization method for fiber placement design of CFRP plate and shell structures. Compos. Struct. 309, 116729 (2023). https://doi.org/10.1016/j.compstruct.2023.116729

    Article  Google Scholar 

  47. Torisaki, M., Shimoda, M., Al Ali, M.: Shape optimization method for strength design problem of microstructures in a multiscale structure. Int. J. Numer. Methods Eng. 124, 1748–1772 (2023). https://doi.org/10.1002/nme.7186

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Musaddiq Al Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Al Ali, M. et al. (2024). Exploring Concurrent Multi-materials and Multiscale Hybrid Topology Optimization for Lightweight Porous Gripping Mechanism. In: Benaissa, B., Capozucca, R., Khatir, S., Milani, G. (eds) Proceedings of the International Conference of Steel and Composite for Engineering Structures. ICSCES 2023. Lecture Notes in Civil Engineering, vol 486. Springer, Cham. https://doi.org/10.1007/978-3-031-57224-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57224-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57223-4

  • Online ISBN: 978-3-031-57224-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics