Skip to main content

Modelling Individual Aesthetic Preferences of 3D Sculptures

  • Conference paper
  • First Online:
Artificial Intelligence in Music, Sound, Art and Design (EvoMUSART 2024)

Abstract

Aesthetic preference is a complex puzzle with many subjective aspects. This subjectivity makes it incredibly difficult to computationally model aesthetic preference for an individual. Despite this complexity, individual aesthetic preference is an important part of life, impacting a multitude of aspects, including romantic and platonic relationships, decoration, product choices and artwork. Models of aesthetic preference form the basis of automated and semi-automated Evo-Art systems. These range from looking at individual aspects to more complex models considering multiple, different criteria. Effectively modelling aesthetic preference greatly increases the potential impact of these systems. This paper presents a flexible computational model of aesthetic preference, primarily focusing on generating 3D sculptures. Through demonstrating the model using several examples, it is shown that the model is flexible enough to identify and respond to individual aesthetic preferences, handling the subjectivity at the root of aesthetic preference and providing a good base for further extension to strengthen the ability of the system to model individual aesthetic preference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Birkhoff, G.: Aesthetic Measure. Harvard University Press, Cambridge (1933)

    Book  Google Scholar 

  2. Boden, M.A., et al.: The Creative Mind: Myths and Mechanisms. Psychology Press (2004)

    Google Scholar 

  3. Canaan, R., Menzel, S., Togelius, J., Nealen, A.: Towards game-based metrics for computational co-creativity. In: 2018 IEEE Conference on Computational Intelligence and Games (CIG), pp. 1–8. IEEE (2018)

    Google Scholar 

  4. Easton, E.: Measuring the impact of subjective and transient aesthetics in the generation and appreciation of 3D virtual artwork. Ph.D. thesis, Aston University, Birmingham, UK (2023)

    Google Scholar 

  5. Easton, E., Bernardet, U., Ekárt, A.: Contributors to the aesthetic judgement of 3D virtual sculptures. In: 2023 Third International Conference on Digital Creation in Arts, Media and Technology (ARTeFACTo). IEEE (2023)

    Google Scholar 

  6. Easton, E., Bernardet, U., Ekárt, A.: Is beauty in the age of the beholder? In: Johnson, C., Rodríguez-Fernández, N., Rebelo, S.M. (eds.) EvoMUSART 2023. LNCS, vol. 13988, pp. 84–99. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-29956-8_6

    Chapter  Google Scholar 

  7. Easton, E., Ekárt, A., Bernardet, U.: Axial generation: a concretism-inspired method for synthesizing highly varied artworks. In: Romero, J., Martins, T., Rodríguez-Fernández, N. (eds.) EvoMUSART 2021. LNCS, vol. 12693, pp. 115–130. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72914-1_8

    Chapter  Google Scholar 

  8. Easton, E., Ekárt, A., Bernardet, U.: Axial generation: mixing colour and shapes to automatically form diverse digital sculptures. SN Comput. Sci. 3(6), 505 (2022). https://doi.org/10.1007/s42979-022-01329-0

    Article  Google Scholar 

  9. Ekárt, A., Joó, A., Sharma, D., Chalakov, S.: Modelling the underlying principles of human aesthetic preference in evolutionary art. J. Math. Arts 6(2–3), 107–124 (2012)

    Article  Google Scholar 

  10. Hayn-Leichsenring, G.U., Chatterjee, A.: Colliding terminological systems-Immanuel Kant and contemporary empirical aesthetics. Empir. Stud. Arts 37(2), 197–219 (2019)

    Article  Google Scholar 

  11. den Heijer, E., Eiben, A.E.: Comparing aesthetic measures for evolutionary art. In: Di Chio, C., et al. (eds.) EvoApplications 2010. LNCS, vol. 6025, pp. 311–320. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12242-2_32

    Chapter  Google Scholar 

  12. Johnson, C.G., McCormack, J., Santos, I., Romero, J.: Understanding aesthetics and fitness measures in evolutionary art systems. Complexity 2019, 3495962 (2019)

    Article  Google Scholar 

  13. Koidan, K.: Legal & ethical aspects of using DALL-E, midjourney, & stable diffusion (2023). https://medium.com/@katekoidan/legal-ethical-aspects-of-using-dall-e-midjourney-stable-diffusion-cc5606a76d8e

  14. Leder, H., Goller, J., Rigotti, T., Forster, M.: Private and shared taste in art and face appreciation. Front. Hum. Neurosci. 10, 155 (2016)

    Article  Google Scholar 

  15. Leder, H., Nadal, M.: Ten years of a model of aesthetic appreciation and aesthetic judgments: the aesthetic episode-developments and challenges in empirical aesthetics. Br. J. Psychol. 105(4), 443–464 (2014)

    Article  Google Scholar 

  16. Leder, H., Tinio, P.P., Brieber, D., Kröner, T., Jacobsen, T., Rosenberg, R.: Symmetry is not a universal law of beauty. Empir. Stud. Arts 37(1), 104–114 (2019)

    Article  Google Scholar 

  17. Li, Y., Hu, C., Chen, M., Hu, J.: Investigating aesthetic features to model human preference in evolutionary art. In: Machado, P., Romero, J., Carballal, A. (eds.) EvoMUSART 2012. LNCS, vol. 7247, pp. 153–164. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29142-5_14

    Chapter  Google Scholar 

  18. Johnson, C.G.: Aesthetics, artificial intelligence, and search-based art. In: Machado, P., Romero, J., Greenfield, G. (eds.) Artificial Intelligence and the Arts. CSCS, pp. 27–60. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-59475-6_2

    Chapter  Google Scholar 

  19. Mahmoudi, M., Sapiro, G.: Three-dimensional point cloud recognition via distributions of geometric distances. Graph. Models 71(1), 22–31 (2009)

    Article  Google Scholar 

  20. Matkovic, K., Neumann, L., Neumann, A., Psik, T., Purgathofer, W.: Global contrast factor-a new approach to image contrast. In: Computational Aesthetics 2005, pp. 159–168 (2005)

    Google Scholar 

  21. Monteiro, L.C.P., do Nascimento, V.E.F., da Silva, A.C., Miranda, A.C., Souza, G.S., Ripardo, R.C.: The role of art expertise and symmetry on facial aesthetic preferences. Symmetry 14(2), 423 (2022)

    Google Scholar 

  22. Pelowski, M., Markey, P.S., Lauring, J.O., Leder, H.: Visualizing the impact of art: an update and comparison of current psychological models of art experience. Front. Hum. Neurosci. 10, 160 (2016)

    Article  Google Scholar 

  23. Plunkett, L.: AI creating “art” is an ethical and copyright nightmare (2022). https://kotaku.com/ai-art-dall-e-midjourney-stable-diffusion-copyright-1849388060

  24. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  25. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)

    Google Scholar 

  26. Romero, J., Machado, P., Santos, A., Cardoso, A.: On the development of critics in evolutionary computation artists. In: Cagnoni, S., et al. (eds.) EvoWorkshops 2003. LNCS, vol. 2611, pp. 559–569. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36605-9_51

    Chapter  Google Scholar 

  27. Sims, K.: Artificial evolution for computer graphics. In: Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, pp. 319–328. ACM (1991)

    Google Scholar 

  28. Takagi, H.: Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation. Proc. IEEE 89(9), 1275–1296 (2001)

    Article  Google Scholar 

  29. Taylor, J.: From trump Nevermind babies to deep fakes: DALL-E and the ethics of AI art (2022). https://www.theguardian.com/technology/2022/jun/19/from-trump-nevermind-babies-to-deep-fakes-dall-e-and-the-ethics-of-ai-art

  30. Ventura, D., Gates, D.: Ethics as aesthetic: a computational creativity approach to ethical behavior. In: ICCC, pp. 185–191 (2018)

    Google Scholar 

  31. Wiggins, G.A.: A preliminary framework for description, analysis and comparison of creative systems. Knowl.-Based Syst. 19(7), 449–458 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Easton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Easton, E., Bernardet, U., Ekárt, A. (2024). Modelling Individual Aesthetic Preferences of 3D Sculptures. In: Johnson, C., Rebelo, S.M., Santos, I. (eds) Artificial Intelligence in Music, Sound, Art and Design. EvoMUSART 2024. Lecture Notes in Computer Science, vol 14633. Springer, Cham. https://doi.org/10.1007/978-3-031-56992-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56992-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56991-3

  • Online ISBN: 978-3-031-56992-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics