Skip to main content

Evoboard: Geoboard-Inspired Evolved Typefonts

  • Conference paper
  • First Online:
Artificial Intelligence in Music, Sound, Art and Design (EvoMUSART 2024)

Abstract

Type design is a field that deals with the creation of visually appealing designs for the written language. The work of the designer is time-consuming and requires many iterations until the final solution is achieved. Although a human expert is required to validate the final results, this task can be aided by automatic design software. We propose Evoboard, an automatic algorithm that evolves a typefont using a geoboard-inspired representation where each character is a self-intersecting polygon. Evoboard uses a genetic algorithm to optimize the number of vertices of the polygon and their positions in a grid. The evolution of the population is guided by an Optical Character Recognition (OCR) model that aims to maximize the recognition of the polygon as the target character. Thanks to this simple pipeline, both the OCR model and the representation can be easily modified by the user to their needs. We evolve a set of 36 alphanumeric characters that are both highly legible and aesthetically appealing, two important aspects of type design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Implementation available at www.github.com/jespb/Evoboard.

  2. 2.

    In the fixed-length Evoboard variant, the length is always set to 11.

References

  1. Ahn, Y., Jin, G.: TYPE+CODE II: a code-driven typography. Leonardo 49(2), 168–168 (2016). https://doi.org/10.1162/LEON_a_01062

    Article  Google Scholar 

  2. Ascott, R.: Behaviourist art and the cybernetic vision. Cybernetica 9, 247–264 (1966)

    Google Scholar 

  3. Batista, J.E., Silva, S.: Comparative study of classifier performance using automatic feature construction by M3GP. In: 2022 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2022). https://doi.org/10.1109/CEC55065.2022.9870343

  4. Boden, M., Edmonds, E.: What is generative art? Digital Creativity 20, 21–46 (2009). https://doi.org/10.1080/14626260902867915

    Article  Google Scholar 

  5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  6. Bringhurst, R.: The Elements of Typographic Style. Hartley & Marks, Publishers, Elements of Typographic Style (2004)

    Google Scholar 

  7. Cohen, G., Afshar, S., Tapson, J., van Schaik, A.: EMNIST: an extension of MNIST to handwritten letters. CoRR abs/1702.05373 (2017)

    Google Scholar 

  8. Deng, L.: The MNIST database of handwritten digit images for machine learning research. IEEE Signal Process. Mag. 29(6), 141–142 (2012)

    Article  Google Scholar 

  9. FCT - Foundation for Science and Technology: CENTRO DE INFORMÁTICA E SISTEMAS DA UNIVERSIDADE DE COIMBRA. https://doi.org/10.54499/UIDB/00326/2020. Accessed 17 Jan 2024

  10. FCT - Foundation for Science and Technology: CENTRO DE INFORMÁTICA E SISTEMAS DA UNIVERSIDADE DE COIMBRA. https://doi.org/10.54499/UIDP/00326/2020. Accessed 17 Jan 2024

  11. FCT - Foundation for Science and Technology: LASIGE - Extreme Computing. https://doi.org/10.54499/UIDB/00408/2020. Accessed 17 Jan 2024

  12. FCT - Foundation for Science and Technology: LASIGE - Extreme Computing. https://doi.org/10.54499/UIDP/00408/2020. Accessed 17 Jan 2024

  13. Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: International Conference on Learning Representations (2015). http://arxiv.org/abs/1412.6572

  14. Guo, S., et al.: Vinci: An intelligent graphic design system for generating advertising posters. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. CHI 2021, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3411764.3445117

  15. Hochuli, J.: Detail in typography (English reprint). B42, Paris, France (2015)

    Google Scholar 

  16. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology. Control and Artificial Intelligence. MIT Press, Cambridge (1992)

    Google Scholar 

  17. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989). https://doi.org/10.1162/neco.1989.1.4.541

    Article  Google Scholar 

  18. Levin, G., Feinberg, J., Curtis, C.: The alphabet synthesis machine. https://www.alphabetsynthesis.com/. Accessed 15 Nov 2023

  19. Magre, N., Brown, N.: Typography-MNIST (TMNIST): an MNIST-style image dataset to categorize glyphs and font-styles (2022)

    Google Scholar 

  20. Martins, T., Correia, J.A., Costa, E., Machado, P.: Evotype: from shapes to glyphs. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, pp. 261–268. GECCO 2016, Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2908812.2908907

  21. Martins, T., Correia, J., Costa, E., Machado, P.: Evotype: evolutionary type design. In: Johnson, C., Carballal, A., Correia, J. (eds.) EvoMUSART 2015. LNCS, pp. 136–147. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16498-4_13

    Chapter  Google Scholar 

  22. Muller-Brockmann, J.: Rastersysteme für die visuelle Gestaltung - Grid systems in Graphic Design. Niggli Verlag, Sulgen, Switzerland (1999)

    Google Scholar 

  23. OpenAI: DALL-E 3. https://openai.com/dall-e-3. Accessed 14 Nov 2023

  24. Parente, J., Martins, T., ao Bicker, J., Hardman, P., Machado, P.: Working with type: approaches on generative and evolutionary typographic creation. In: Proceedings of the Eleventh International Conference on Computational Creativity (2020)

    Google Scholar 

  25. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  Google Scholar 

  26. Rebelo, S., Martins, T., ao Bicker, J., Machado, P.: Exploring automatic fitness evaluation for evolutionary typesetting. In: Creativity and Cognition. C &C 2021, Association for Computing Machinery, New York, NY, USA (2021)

    Google Scholar 

  27. Rebelo, S.M., Martins, T., Ferreira, D., Rebelo, A.: Towards the automation of book typesetting. Vis. Inform. 7(2), 1–12 (2023). https://doi.org/10.1016/j.visinf.2023.01.003

    Article  Google Scholar 

  28. Richardson, A.: Data-Driven Graphic Design: Creative Coding for Visual Communication. Bloomsbury Publishing, London (2017)

    Google Scholar 

  29. Takagi, H.: Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation. Proc. IEEE 89(9), 1275–1296 (2001). https://doi.org/10.1109/5.949485

    Article  Google Scholar 

  30. Unemi, T., Soda, M.: An IEC-based support system for font design. vol. 1, pp. 968–973 (2003). https://doi.org/10.1109/ICSMC.2003.1243940

  31. ValgrAI: ValgrAI - Valencian Graduate School and Research Network for Artificial Intelligence. https://valgrai.eu/. Accessed 17 Jan 2024

  32. Wang, Z.: Ze Wang’s website. https://zewang.info/Generative-Typography. Accessed 15 Nov 2023

  33. Yin, W., Mei, T., Chen, C.W.: Automatic generation of social media snippets for mobile browsing. In: Proceedings of the 21st ACM International Conference on Multimedia, pp. 927–936. MM 2013, Association for Computing Machinery, New York, NY, USA (2013). https://doi.org/10.1145/2502081.2502116

  34. Yoshida, K., Nakagawa, Y., Köppen, M.: Interactive genetic algorithm for font generation system. In: 2010 World Automation Congress, pp. 1–6 (2010)

    Google Scholar 

Download references

Acknowledgments

Work funded by FCT through the LASIGE R &D Unit, UIDB/00408/2020 [11] and UIDP/00408/2020 [12] — CISUC R &D Unit, UIDB/00326/2020 [9] and UIDP/00326/2020 [10]; ValgrAI: Valencian Graduate School and Research Network for Artificial Intelligence [31]; and Generalitat Valenciana.

We would also like to thank the Society for the Promotion of Evolutionary Computation in Europe and its Surroundings (SPECIES) for the opportunity to participate in the SPECIES Summer School 2023, which took place in Moraira, Spain, between the 3rd and 9th of September, where this work originated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Eduardo Batista .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Batista, J.E., Garrow, F., Huesca-Spairani, C., Martins, T. (2024). Evoboard: Geoboard-Inspired Evolved Typefonts. In: Johnson, C., Rebelo, S.M., Santos, I. (eds) Artificial Intelligence in Music, Sound, Art and Design. EvoMUSART 2024. Lecture Notes in Computer Science, vol 14633. Springer, Cham. https://doi.org/10.1007/978-3-031-56992-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56992-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56991-3

  • Online ISBN: 978-3-031-56992-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics