Skip to main content

Pruning Worlds into Stories: Affective Interactions as Fitness Function

  • Conference paper
  • First Online:
Artificial Intelligence in Music, Sound, Art and Design (EvoMUSART 2024)


An important challenge when trying to find a story to tell about some set of events that has already happened is to identify the elements in that set of events that will make a story that moves the intended audience. One possible criterion is to consider events that involve significant changes in the emotional relations between the characters involved. The present paper explores a computational model of this particular approach to the task of storytelling. An evolutionary solution is used to explore the logs of an agent-based social simulation, using metrics on the evolution of affinity between characters as fitness function, to identify sequences of events that might be good candidates for moving stories.

This paper has been partially funded by the projects CANTOR: Automated Composition of Personal Narratives as an aid for Occupational Therapy based on Reminescence, Grant. No. PID2019-108927RB-I00 (Spanish Ministry of Science and Innovation) and the ADARVE (Análisis de Datos de Realidad Virtual para Emergencias Radiológicas) Project funded by the Spanish Consejo de Seguridad Nuclear (CSN).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


  1. 1.

    Searches through outputs of the Bad News game required processing 140 years of simulation of a unique procedurally generated small American town [21].


  1. Behrooz, M., Swanson, R., Jhala, A.: Remember that time? Telling interesting stories from past interactions. In: Schoenau-Fog, H., Bruni, L.E., Louchart, S., Baceviciute, S. (eds.) ICIDS 2015. LNCS, vol. 9445, pp. 93–104. Springer, Cham (2015).

    Chapter  Google Scholar 

  2. Concepción, E., Gervás, P., Méndez, G.: Ines: a reconstruction of the Charade storytelling system using the Afanasyev framework. In: Proceedings of the Ninth International Conference on Computational Creativity, Salamanca, Spain, pp. 48–55 (2018)

    Google Scholar 

  3. Egan, K.: What is a plot? New Literary Hist. 9(3), 455–473 (1978)

    Article  Google Scholar 

  4. Gervás, P.: Composing narrative discourse for stories of many characters: a case study over a chess game. Literary Linguist. Comput. 29(4), 511–531 (2014)

    Article  MathSciNet  Google Scholar 

  5. Gervás, P.: Storifying observed events: could i dress this up as a story? In: 5th AISB Symposium on Computational Creativity. AISB, AISB, University of Liverpool (2018)

    Google Scholar 

  6. Gervás, P.: Evolutionary stitching of plot units with character threads. In: De Stefano, C., Fontanella, F., Vanneschi, L. (eds.) WIVACE 2022. CCIS, vol. 1780, pp. 254–265. Springer, Cham (2022).

    Chapter  Google Scholar 

  7. Gervás, P.: Improving efficiency and coherence in evolutionary story generation. In: 14th International Conference on Computational Creativity, Waterloo, Ontario, Canada (2023)

    Google Scholar 

  8. Gervás, P., Concepción, E., Méndez, G.: Evolutionary construction of stories that combine several plot lines. In: Martins, T., Rodríguez-Fernández, N., Rebelo, S.M. (eds.) EvoMUSART 2022. LNCS, vol. 13221, pp. 68–83. Springer, Cham (2022).

    Chapter  Google Scholar 

  9. Kreminski, M., Dickinson, M., Mateas, M.: Winnow: a domain-specific language for incremental story sifting. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 17, no. 1, pp. 156–163 (2021)

    Google Scholar 

  10. Kreminski, M., Dickinson, M., Wardrip-Fruin, N.: Felt: a simple story sifter. In: Cardona-Rivera, R.E., Sullivan, A., Young, R.M. (eds.) ICIDS 2019. LNCS, vol. 11869, pp. 267–281. Springer, Cham (2019).

    Chapter  Google Scholar 

  11. Kreminski, M., Dickinson, M., Wardrip-Fruin, N., Mateas, M.: Select the unexpected: a statistical heuristic for story sifting. In: Vosmeer, M., Holloway-Attaway, L. (eds.) ICIDS 2022. LNCS, vol. 13762, pp. 292–308. Springer, Cham (2022).

    Chapter  Google Scholar 

  12. Lee, O.J., Jung, J.J.: Story embedding: learning distributed representations of stories based on character networks. Artif. Intell. 281, 103235 (2020)

    Article  MathSciNet  Google Scholar 

  13. Leong, W., Porteous, J., Thangarajah, J.: Automated story sifting using story arcs. In: Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems. AAMAS 2022, pp. 1669–1671. International Foundation for Autonomous Agents and Multiagent Systems, Richland (2022)

    Google Scholar 

  14. de Lima, E.S., Feijó, B., Furtado, A.L.: Procedural generation of quests for games using genetic algorithms and automated planning. In: 18th Brazilian Symposium on Computer Games and Digital Entertainment. SBGames 2019, Rio de Janeiro, Brazil, 28–31 October 2019, pp. 144–153. IEEE (2019).

  15. McIntyre, N., Lapata, M.: Plot induction and evolutionary search for story generation. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pp. 1562–1572. Association for Computational Linguistics, Uppsala (2010)

    Google Scholar 

  16. Méndez, G., Gervás, P., León, C.: On the use of character affinities for story plot generation. In: Kunifuji, S., Papadopoulos, G.A., Skulimowski, A.M.J., Kacprzyk, J. (eds.) Knowledge, Information and Creativity Support Systems. AISC, vol. 416, pp. 211–225. Springer, Cham (2016).

    Chapter  Google Scholar 

  17. Pérez ý Pérez, R., Sharples, M.: MEXICA: a computer model of a cognitive account of creative writing. J. Exp. Theor. Artif. Intell. 13(2), 119–139 (2001)

    Google Scholar 

  18. Reagan, A.J., Mitchell, L., Kiley, D., Danforth, C.M., Dodds, P.S.: The emotional arcs of stories are dominated by six basic shapes. EPJ Data Sci. 5(1), 1–12 (2016)

    Article  Google Scholar 

  19. Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms. Springer, Heidelberg (2006).

    Book  Google Scholar 

  20. Ryan, J.: Curating simulated storyworlds. Ph.D. thesis, University of California Santa Cruz, CA, USA (2018)

    Google Scholar 

  21. Samuel, B., Summerville, A., Ryan, J., England, L.: A quantified analysis of bad news for story sifting interfaces. In: Mitchell, A., Vosmeer, M. (eds.) ICIDS 2021. LNCS, vol. 13138, pp. 142–156. Springer, Cham (2021).

    Chapter  Google Scholar 

  22. de Silva Garza, A.G., y Pérez, R.P.: Towards evolutionary story generation. In: Colton, S., Ventura, D., Lavrac, N., Cook, M. (eds.) Proceedings of the Fifth International Conference on Computational Creativity. ICCC 2014, Ljubljana, Slovenia, 10–13 June 2014, pp. 332–335. (2014)

    Google Scholar 

  23. Weiland, K.: Creating Character Arcs: The Masterful Author’s Guide to Uniting Story Structure, Plot, and Character Development. Helping Writers Become Authors. PenForASword Publishing (2016).

  24. Xie, Z.: Neural text generation: a practical guide. arXiv preprint arXiv:1711.09534 (2017)

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Pablo Gervás .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gervás, P., Méndez, G. (2024). Pruning Worlds into Stories: Affective Interactions as Fitness Function. In: Johnson, C., Rebelo, S.M., Santos, I. (eds) Artificial Intelligence in Music, Sound, Art and Design. EvoMUSART 2024. Lecture Notes in Computer Science, vol 14633. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56991-3

  • Online ISBN: 978-3-031-56992-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics