Abstract
Medullary thyroid cancer (MTC) is a neuroendocrine tumor that emerges from parafollicular or C cells of the thyroid, and it consists of approximately 3–5% of malign thyroid neoplasms. The most common presentation of sporadic MTC is solitary thyroid nodule (in 75–95% of patients). Unfortunately, most patients have metastatic disease at the time of diagnosis. The serum calcitonin concentrations usually correlate with tumor volume and reflect tumor differentiation. The fine-needle aspiration (FNA) biopsy is used for the diagnosis of MTC and its sensitivity is improved by the addition of immunohistochemical staining for calcitonin. Sporadic MTC accounts for approximately 75% of all cases of the disease, and the average age of presentation is in the fourth and sixth decades of life. Inherited MTC (in 25% of patients) is transmitted in an autosomal dominant fashion and emerges as a part of the multiple endocrine neoplasia type 2 (MEN2) syndrome which is divided into two different subgroups, MEN 2A and MEN 2B. Total thyroidectomy rather than unilateral lobectomy is the preferred surgical approach because especially inherited MTC tends to be a bilateral or multifocal disease. Additional cervical lymph node dissection is made according to the findings of pre/intraoperative ultrasound identification of lymph node metastases. The initial therapy for metastatic MTC patients depends on the presence of RET mutation and could be selective and non-selective TKIs (selpercatinib, cabozantinib, or vandetanib, etc.). However, sorafenib, sunitinib, or Lenvatinib, etc. are reasonable options for patients who fail first-line treatment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Noone A, Howlader N, Krapcho M, Miller D, Brest A, Yu M et al (2018) Surveillance, epidemiology, and end results (SEER) program cancer statistics review, 1975–2015. National Cancer Institute, Bethesda
Filetti S, Durante C, Hartl D, Leboulleux S, Locati L, Newbold K et al (2019) Thyroid cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 30(12):1856–1883
Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69(1):7–34
Wells SA Jr, Asa SL, Dralle H, Elisei R, Evans DB, Gagel RF et al (2015) Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 25(6):567–610
Davies L, Welch HG (2006) Increasing incidence of thyroid cancer in the United States, 1973-2002. JAMA 295(18):2164–2167
Romei C, Elisei R, Pinchera A, Ceccherini I, Molinaro E, Mancusi F et al (1996) Somatic mutations of the ret protooncogene in sporadic medullary thyroid carcinoma are not restricted to exon 16 and are associated with tumor recurrence. J Clin Endocrinol Metab 81(4):1619–1622
Hofstra RM, Landsvater RM, Ceccherini I, Stulp RP, Stelwagen T, Luo Y et al (1994) A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature 367(6461):375–376
Eng C, Mulligan LM, Smith DP, Healey CS, Frilling A, Raue F et al (1995) Low frequency of germline mutations in the RET proto-oncogene in patients with apparently sporadic medullary thyroid carcinoma. Clin Endocrinol 43(1):123–127
Elisei R, Romei C, Cosci B, Agate L, Bottici V, Molinaro E et al (2007) RET genetic screening in patients with medullary thyroid cancer and their relatives: experience with 807 individuals at one center. J Clin Endocrinol Metab 92(12):4725–4729
Abe K, Adachi I, Miyakawa S, Tanaka M, Yamaguchi K, Tanaka N et al (1977) Production of calcitonin, adrenocorticotropic hormone, and beta-melanocyte-stimulating hormone in tumors derived from amine precursor uptake and decarboxylation cells. Cancer Res 37(11):4190–4194
Baylin SB, Beaven MA, Engelman K, Sjoerdsma A (1970) Elevated histaminase activity in medullary carcinoma of the thyroid gland. N Engl J Med 283(23):1239–1244
Ishikawa N, Hamada S (1976) Association of medullary carcinoma of the thyroid with carcinoembryonic antigen. Br J Cancer 34(2):111–115
Takahashi M, Ritz J, Cooper GM (1985) Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell 42(2):581–588
Ishizaka Y, Itoh F, Tahira T, Ikeda I, Sugimura T, Tucker J et al (1989) Human ret proto-oncogene mapped to chromosome 10q11.2. Oncogene 4(12):1519–1521
F. American Thyroid Association Guidelines Task, Kloos RT, Eng C, Evans DB, Francis GL, Gagel RF et al (2009) Medullary thyroid cancer: management guidelines of the American Thyroid Association. Thyroid 19(6):565–612
Elisei R, Cosci B, Romei C, Bottici V, Renzini G, Molinaro E et al (2008) Prognostic significance of somatic RET oncogene mutations in sporadic medullary thyroid cancer: a 10-year follow-up study. J Clin Endocrinol Metab 93(3):682–687
Moura MM, Cavaco BM, Pinto AE, Leite V (2011) High prevalence of RAS mutations in RET-negative sporadic medullary thyroid carcinomas. J Clin Endocrinol Metab 96(5):E863–E868
Ciampi R, Mian C, Fugazzola L, Cosci B, Romei C, Barollo S et al (2013) Evidence of a low prevalence of RAS mutations in a large medullary thyroid cancer series. Thyroid 23(1):50–57
Romei C, Ugolini C, Cosci B, Torregrossa L, Vivaldi A, Ciampi R et al (2012) Low prevalence of the somatic M918T RET mutation in micro-medullary thyroid cancer. Thyroid 22(5):476–481
Steiner AL, Goodman AD, Powers SR (1968) Study of a kindred with pheochromocytoma, medullary thyroid carcinoma, hyperparathyroidism and Cushing’s disease: multiple endocrine neoplasia, type 2. Medicine (Baltimore) 47(5):371–409
Schimke RN, Hartmann WH, Prout TE, Rimoin DL (1968) Syndrome of bilateral pheochromocytoma, medullary thyroid carcinoma and multiple neuromas. A possible regulatory defect in the differentiation of chromaffin tissue. N Engl J Med 279(1):1–7
Gorlin RJ, Sedano HO, Vickers RA, Cervenka J (1968) Multiple mucosal neuromas, pheochromocytoma and medullary carcinoma of the thyroid—a syndrome. Cancer 22(2):293–299. passim
Williams ED, Pollock DJ (1966) Multiple mucosal neuromata with endocrine tumours: a syndrome allied to von Recklinghausen’s disease. J Pathol Bacteriol 91(1):71–80
Oliveira MN, Hemerly JP, Bastos AU, Tamanaha R, Latini FR, Camacho CP et al (2011) The RET p.G533C mutation confers predisposition to multiple endocrine neoplasia type 2A in a Brazilian kindred and is able to induce a malignant phenotype in vitro and in vivo. Thyroid 21(9):975–985
Peppa M, Boutati E, Kamakari S, Pikounis V, Peros G, Panayiotides IG et al (2008) Multiple endocrine neoplasia type 2A in two families with the familial medullary thyroid carcinoma associated G533C mutation of the RET proto-oncogene. Eur J Endocrinol 159(6):767–771
Bethanis S, Koutsodontis G, Palouka T, Avgoustis C, Yannoukakos D, Bei T et al (2007) A newly detected mutation of the RET protooncogene in exon 8 as a cause of multiple endocrine neoplasia type 2A. Hormones (Athens) 6(2):152–156
Castro MR, Thomas BC, Richards ML, Zhang J, Morris JC (2013) Multiple endocrine neoplasia type 2A due to an exon 8 (G533C) mutation in a large North American kindred. Thyroid 23(12):1547–1552
Conzo G, Circelli L, Pasquali D, Sinisi A, Sabatino L, Accardo G et al (2012) Lessons to be learned from the clinical management of a MEN 2A patient bearing a novel 634/640/700 mutation of the RET proto-oncogene. Clin Endocrinol 77(6):934–936
Raue F, Frank-Raue K (2012) Genotype-phenotype correlation in multiple endocrine neoplasia type 2. Clinics (Sao Paulo) 67(Suppl 1):69–75
Carlson KM, Dou S, Chi D, Scavarda N, Toshima K, Jackson CE et al (1994) Single missense mutation in the tyrosine kinase catalytic domain of the RET protooncogene is associated with multiple endocrine neoplasia type 2B. Proc Natl Acad Sci U S A 91(4):1579–1583
Gimm O, Marsh DJ, Andrew SD, Frilling A, Dahia PL, Mulligan LM et al (1997) Germline dinucleotide mutation in codon 883 of the RET proto-oncogene in multiple endocrine neoplasia type 2B without codon 918 mutation. J Clin Endocrinol Metab 82(11):3902–3904
Rich TA, Feng L, Busaidy N, Cote GJ, Gagel RF, Hu M et al (2014) Prevalence by age and predictors of medullary thyroid cancer in patients with lower risk germline RET proto-oncogene mutations. Thyroid 24(7):1096–1106
Saad MF, Ordonez NG, Rashid RK, Guido JJ, Hill CS Jr, Hickey RC et al (1984) Medullary carcinoma of the thyroid. A study of the clinical features and prognostic factors in 161 patients. Medicine (Baltimore) 63(6):319–342
Kebebew E, Ituarte PH, Siperstein AE, Duh QY, Clark OH (2000) Medullary thyroid carcinoma: clinical characteristics, treatment, prognostic factors, and a comparison of staging systems. Cancer 88(5):1139–1148
Barbet J, Campion L, Kraeber-Bodere F, Chatal JF, G.T.E.S. Group (2005) Prognostic impact of serum calcitonin and carcinoembryonic antigen doubling-times in patients with medullary thyroid carcinoma. J Clin Endocrinol Metab 90(11):6077–6084
Trimboli P, Treglia G, Guidobaldi L, Romanelli F, Nigri G, Valabrega S et al (2015) Detection rate of FNA cytology in medullary thyroid carcinoma: a meta-analysis. Clin Endocrinol 82(2):280–285
Bhanot P, Yang J, Schnadig VJ, Logrono R (2007) Role of FNA cytology and immunochemistry in the diagnosis and management of medullary thyroid carcinoma: report of six cases and review of the literature. Diagn Cytopathol 35(5):285–292
Khurana R, Agarwal A, Bajpai VK, Verma N, Sharma AK, Gupta RP et al (2004) Unraveling the amyloid associated with human medullary thyroid carcinoma. Endocrinology 145(12):5465–5470
Mendelsohn G, Wells SA Jr, Baylin SB (1984) Relationship of tissue carcinoembryonic antigen and calcitonin to tumor virulence in medullary thyroid carcinoma. An immunohistochemical study in early, localized, and virulent disseminated stages of disease. Cancer 54(4):657–662
Ibrahim M, Hammoud K, Maheshwari M, Pandya A (2011) Congenital cystic lesions of the head and neck. Neuroimaging Clin 21(3):621–639
Abuabara A, Baratto Filho F, Fuzza RF (2010) Thyroglossal duct cyst. RSBO Revista Sul-Brasileira de Odontologia 7(2):244–246
Cătălina R, Alina O, Mioriţa T (2015) Compressing dermoid cyst of the neck. Ther Pharmacol Clin Toxicol 19(4)
April MM, Ward RF, Garelick JM (1998) Diagnosis, management, and follow-up of congenital head and neck teratomas. Laryngoscope 108(9):1398–1401
Leung AK, Davies HD (2009) Cervical lymphadenitis: etiology, diagnosis, and management. Curr Infect Dis Rep 11(3):183–189
Schwetschenau E, Kelley DJ (2002) The adult neck mass. Am Fam Physician 66(5):831
Steenbergh P, Höppener J, Zandberg J, Visser A, Lips C, Jansz H (1986) Structure and expression of the human calcitonin/CGRP genes. FEBS Lett 209(1):97–103
Whang KT, Steinwald PM, White JC, Nylen ES, Snider RH, Simon GL et al (1998) Serum calcitonin precursors in sepsis and systemic inflammation. J Clin Endocrinol Metabol 83(9):3296–3301
Kratzsch J, Petzold A, Raue F, Reinhardt W, Brocker-Preuss M, Gorges R et al (2011) Basal and stimulated calcitonin and procalcitonin by various assays in patients with and without medullary thyroid cancer. Clin Chem 57(3):467–474
Becker KL, Nylen ES, White JC, Muller B, Snider RH Jr (2004) Clinical review 167: procalcitonin and the calcitonin gene family of peptides in inflammation, infection, and sepsis: a journey from calcitonin back to its precursors. J Clin Endocrinol Metab 89(4):1512–1525
Guyetant S, Rousselet MC, Durigon M, Chappard D, Franc B, Guerin O et al (1997) Sex-related C cell hyperplasia in the normal human thyroid: a quantitative autopsy study. J Clin Endocrinol Metab 82(1):42–47
Basuyau JP, Mallet E, Leroy M, Brunelle P (2004) Reference intervals for serum calcitonin in men, women, and children. Clin Chem 50(10):1828–1830
Machens A, Dralle H (2010) Peak calcitonin cut-off levels for the diagnosis of occult medullary thyroid cancer: evidence of confounding by gender. Clin Endocrinol 73(2):274
Scheuba C, Kaserer K, Moritz A, Drosten R, Vierhapper H, Bieglmayer C et al (2009) Sporadic hypercalcitoninemia: clinical and therapeutic consequences. Endocr Relat Cancer 16(1):243–253
Costante G, Meringolo D, Durante C, Bianchi D, Nocera M, Tumino S et al (2007) Predictive value of serum calcitonin levels for preoperative diagnosis of medullary thyroid carcinoma in a cohort of 5817 consecutive patients with thyroid nodules. J Clin Endocrinol Metab 92(2):450–455
Whang KT, Steinwald PM, White JC, Nylen ES, Snider RH, Simon GL et al (1998) Serum calcitonin precursors in sepsis and systemic inflammation. J Clin Endocrinol Metab 83(9):3296–3301
Schuetz M, Duan H, Wahl K, Pirich C, Antoni A, Kommata S et al (2006) T lymphocyte cytokine production patterns in Hashimoto patients with elevated calcitonin levels and their relationship to tumor initiation. Anticancer Res 26(6B):4591–4596
Machens A, Haedecke J, Holzhausen HJ, Thomusch O, Schneyer U, Dralle H (2000) Differential diagnosis of calcitonin-secreting neuroendocrine carcinoma of the foregut by pentagastrin stimulation. Langenbecks Arch Surg 385(6):398–401
Toledo SP, Lourenco DM Jr, Santos MA, Tavares MR, Toledo RA, Correia-Deur JE (2009) Hypercalcitoninemia is not pathognomonic of medullary thyroid carcinoma. Clinics (Sao Paulo) 64(7):699–706
Cohen EG, Shaha AR, Rinaldo A, Devaney KO, Ferlito A (2004) Medullary thyroid carcinoma. Acta Otolaryngol 124(5):544–557
Lee KB, Jang IM, Roh H, Ahn MY, Woo HY (2008) Transient urinary retention in acute right lateral medullary infarction. Neurologist 14(5):312–315
Mirallie E, Vuillez JP, Bardet S, Frampas E, Dupas B, Ferrer L et al (2005) High frequency of bone/bone marrow involvement in advanced medullary thyroid cancer. J Clin Endocrinol Metab 90(2):779–788
Oudoux A, Salaun PY, Bournaud C, Campion L, Ansquer C, Rousseau C et al (2007) Sensitivity and prognostic value of positron emission tomography with F-18-fluorodeoxyglucose and sensitivity of immunoscintigraphy in patients with medullary thyroid carcinoma treated with anticarcinoembryonic antigen-targeted radioimmunotherapy. J Clin Endocrinol Metab 92(12):4590–4597
Giraudet AL, Vanel D, Leboulleux S, Auperin A, Dromain C, Chami L et al (2007) Imaging medullary thyroid carcinoma with persistent elevated calcitonin levels. J Clin Endocrinol Metab 92(11):4185–4190
Ong SC, Schoder H, Patel SG, Tabangay-Lim IM, Doddamane I, Gonen M et al (2007) Diagnostic accuracy of 18F-FDG PET in restaging patients with medullary thyroid carcinoma and elevated calcitonin levels. J Nucl Med 48(4):501–507
Osamura RY, Yasuda O, Kawakami T, Itoh Y, Inada K, Kakudo K (1997) Immunoelectron microscopic demonstration of regulated pathway for calcitonin and constitutive pathway for carcinoembryonic antigen in the same cells of human medullary carcinomas of thyroid glands. Mod Pathol 10(1):7–11
Wells SA Jr, Haagensen DE Jr, Linehan WM, Farrell RE, Dilley WG (1978) The detection of elevated plasma levels of carcinoembryonic antigen in patients with suspected or established medullary thyroid carcinoma. Cancer 42(3 Suppl):1498–1503
Rougier P, Calmettes C, Laplanche A, Travagli JP, Lefevre M, Parmentier C et al (1983) The values of calcitonin and carcinoembryonic antigen in the treatment and management of nonfamilial medullary thyroid carcinoma. Cancer 51(5):855–862
Machens A, Ukkat J, Hauptmann S, Dralle H (2007) Abnormal carcinoembryonic antigen levels and medullary thyroid cancer progression: a multivariate analysis. Arch Surg 142(3):289–293; discussion 294
Turkdogan S, Forest VI, Hier MP, Tamilia M, Florea A, Payne RJ (2018) Carcinoembryonic antigen levels correlated with advanced disease in medullary thyroid cancer. J Otolaryngol Head Neck Surg 47(1):55
Wells SA Jr, Gosnell JE, Gagel RF, Moley J, Pfister D, Sosa JA et al (2010) Vandetanib for the treatment of patients with locally advanced or metastatic hereditary medullary thyroid cancer. J Clin Oncol 28(5):767–772
Machens A, Dralle H (2015) Surgical treatment of medullary thyroid cancer. Recent Results Cancer Res 204:187–205
Brierley J, Tsang R, Simpson WJ, Gospodarowicz M, Sutcliffe S, Panzarella T (1996) Medullary thyroid cancer: analyses of survival and prognostic factors and the role of radiation therapy in local control. Thyroid 6(4):305–310
Wu LT, Averbuch SD, Ball DW, de Bustros A, Baylin SB, McGuire WP III (1994) Treatment of advanced medullary thyroid carcinoma with a combination of cyclophosphamide, vincristine, and dacarbazine. Cancer 73(2):432–436
Nocera M, Baudin E, Pellegriti G, Cailleux AF, Mechelany-Corone C, Schlumberger M (2000) Treatment of advanced medullary thyroid cancer with an alternating combination of doxorubicin-streptozocin and 5 FU-dacarbazine. Groupe d’Etude des Tumeurs a Calcitonine (GETC). Br J Cancer 83(6):715–718
Shimaoka K, Schoenfeld DA, DeWys WD, Creech RH, DeConti R (1985) A randomized trial of doxorubicin versus doxorubicin plus cisplatin in patients with advanced thyroid carcinoma. Cancer 56(9):2155–2160
Kloos RT, Eng C, Evans DB, Francis GL, Gagel RF, Gharib H et al (2009) Medullary thyroid cancer: management guidelines of the American Thyroid Association. Thyroid 19(6):565–612
Machens A, Dralle H (2010) Biomarker-based risk stratification for previously untreated medullary thyroid cancer. J Clin Endocrinol Metab 95(6):2655–2663
Yip DT, Hassan M, Pazaitou-Panayiotou K, Ruan DT, Gawande AA, Gaz RD et al (2011) Preoperative basal calcitonin and tumor stage correlate with postoperative calcitonin normalization in patients undergoing initial surgical management of medullary thyroid carcinoma. Surgery 150(6):1168–1177
Samaan NA, Schultz PN, Hickey RC (1988) Medullary thyroid carcinoma: prognosis of familial versus sporadic disease and the role of radiotherapy. J Clin Endocrinol Metab 67(4):801–805
Jimenez-Fonseca P, Carmona-Bayonas A, Font C, Plasencia-Martinez J, Calvo-Temprano D, Otero R et al (2018) The prognostic impact of additional intrathoracic findings in patients with cancer-related pulmonary embolism. Clin Transl Oncol 20(2):230–242
Esik O, Tusnady G, Tron L, Boer A, Szentirmay Z, Szabolcs I et al (2002) Markov model-based estimation of individual survival probability for medullary thyroid cancer patients. Pathol Oncol Res 8(2):93–104
Fife KM, Bower M, Harmer CL (1996) Medullary thyroid cancer: the role of radiotherapy in local control. Eur J Surg Oncol 22(6):588–591
Stankovic V, Borojevic N, Dzodic R, Golubicic I (2003) [Medullary carcinoma of the thyroid gland: effect of postoperative transcutaneous radiotherapy on local control and results of treatment]. Acta Chir Iugosl 50(3):125–130
Rowell NP (2019) The role of external beam radiotherapy in the management of medullary carcinoma of the thyroid: a systematic review. Radiother Oncol 136:113–120
Orlandi F, Caraci P, Berruti A, Puligheddu B, Pivano G, Dogliotti L et al (1994) Chemotherapy with dacarbazine and 5-fluorouracil in advanced medullary thyroid cancer. Ann Oncol 5(8):763–765
Petursson SR (1988) Metastatic medullary thyroid carcinoma. Complete response to combination chemotherapy with dacarbazine and 5-fluorouracil. Cancer 62(9):1899–1903
Gottlieb JA, Hill CS Jr (1974) Chemotherapy of thyroid cancer with adriamycin. Experience with 30 patients. N Engl J Med 290(4):193–197
Droz JP, Rougier P, Goddefroy V, Schlumberger M, Gardet P, Parmentier C (1984) [Chemotherapy for medullary cancer of the thyroid. Phase II trials with adriamycin and cis-platinum administered as monochemotherapy]. Bull Cancer 71(3):195–199
De Besi P, Busnardo B, Toso S, Girelli ME, Nacamulli D, Simioni N et al (1991) Combined chemotherapy with bleomycin, adriamycin, and platinum in advanced thyroid cancer. J Endocrinol Investig 14(6):475–480
Deutschbein T, Matuszczyk A, Moeller LC, Unger N, Yuece A, Lahner H et al (2011) Treatment of advanced medullary thyroid carcinoma with a combination of cyclophosphamide, vincristine, and dacarbazine: a single-center experience. Exp Clin Endocrinol Diabetes 119(9):540–543
Schlumberger M, Abdelmoumene N, Delisle MJ, Couette JE (1995) Treatment of advanced medullary thyroid cancer with an alternating combination of 5 FU-streptozocin and 5 FU-dacarbazine. The Groupe d’Etude des Tumeurs a Calcitonine (GETC). Br J Cancer 71(2):363–365
Gilliam LK, Kohn AD, Lalani T, Swanson PE, Vasko V, Patel A et al (2006) Capecitabine therapy for refractory metastatic thyroid carcinoma: a case series. Thyroid 16(8):801–810
Lacin S, Esin E, Karakas Y, Yalcin S (2015) Metastatic medullary thyroid cancer: a dramatic response to a systemic chemotherapy (temozolomide and capecitabine) regimen. Onco Targets Ther 8:1039–1042
Paiva CE, Michelin OC (2008) Use of capecitabine in refractory metastatic medullary thyroid carcinoma. Thyroid 18(5):587
Boichard A, Croux L, Al Ghuzlan A, Broutin S, Dupuy C, Leboulleux S et al (2012) Somatic RAS mutations occur in a large proportion of sporadic RET-negative medullary thyroid carcinomas and extend to a previously unidentified exon. J Clin Endocrinol Metab 97(10):E2031–E2035
Drilon A, Oxnard G, Wirth L, Besse B, Gautschi O, Tan S et al (2019) PL02.08 registrational results of LIBRETTO-001: a phase 1/2 trial of LOXO-292 in patients with RET fusion-positive lung cancers. J Thorac Oncol 14(10):S6–S7
Wells SA Jr, Robinson BG, Gagel RF, Dralle H, Fagin JA, Santoro M et al (2012) Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol 30(2):134–141
Schlumberger M, Elisei R, Muller S, Schoffski P, Brose M, Shah M et al (2017) Overall survival analysis of EXAM, a phase III trial of cabozantinib in patients with radiographically progressive medullary thyroid carcinoma. Ann Oncol 28(11):2813–2819
Lam ET, Ringel MD, Kloos RT, Prior TW, Knopp MV, Liang J et al (2010) Phase II clinical trial of sorafenib in metastatic medullary thyroid cancer. J Clin Oncol 28(14):2323–2330
Carr LL, Mankoff DA, Goulart BH, Eaton KD, Capell PT, Kell EM et al (2010) Phase II study of daily sunitinib in FDG-PET-positive, iodine-refractory differentiated thyroid cancer and metastatic medullary carcinoma of the thyroid with functional imaging correlation. Clin Cancer Res 16(21):5260–5268
Bible KC, Suman VJ, Molina JR, Smallridge RC, Maples WJ, Menefee ME et al (2014) A multicenter phase 2 trial of pazopanib in metastatic and progressive medullary thyroid carcinoma: MC057H. J Clin Endocrinol Metab 99(5):1687–1693
Schlumberger M, Jarzab B, Cabanillas ME, Robinson B, Pacini F, Ball DW et al (2016) A phase II trial of the multitargeted tyrosine kinase inhibitor lenvatinib (E7080) in advanced medullary thyroid cancer. Clin Cancer Res 22(1):44–53
Schlumberger MJ, Elisei R, Bastholt L, Wirth LJ, Martins RG, Locati LD et al (2009) Phase II study of safety and efficacy of motesanib in patients with progressive or symptomatic, advanced or metastatic medullary thyroid cancer. J Clin Oncol 27(23):3794–3801
Cohen EE, Rosen LS, Vokes EE, Kies MS, Forastiere AA, Worden FP et al (2008) Axitinib is an active treatment for all histologic subtypes of advanced thyroid cancer: results from a phase II study. J Clin Oncol 26(29):4708–4713
de Groot JW, Zonnenberg BA, van Ufford-Mannesse PQ, de Vries MM, Links TP, Lips CJ et al (2007) A phase II trial of imatinib therapy for metastatic medullary thyroid carcinoma. J Clin Endocrinol Metab 92(9):3466–3469
Wirth LJ, Sherman E, Robinson B, Solomon B, Kang H, Lorch J et al (2020) Efficacy of Selpercatinib in RET-altered thyroid cancers. N Engl J Med 383(9):825–835
Carlomagno F, Vitagliano D, Guida T, Ciardiello F, Tortora G, Vecchio G et al (2002) ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res 62(24):7284–7290
Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P et al (2011) Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther 10(12):2298–2308
Sennino B, Naylor RM, Tabruyn SP, You WK, Aftab DT, McDonald DM (2009) Abstract A13: reduction of tumor invasiveness and metastasis and prolongation of survival of RIP-Tag2 mice after inhibition of VEGFR plus c-met by XL184. AACR 8:A13
Kurzrock R, Sherman SI, Ball DW, Forastiere AA, Cohen RB, Mehra R et al (2011) Activity of XL184 (Cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. J Clin Oncol 29(19):2660–2666
Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H et al (2004) BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64(19):7099–7109
Frank-Raue K, Ganten M, Kreissl MC, Raue F (2011) Rapid response to sorafenib in metastatic medullary thyroid carcinoma. Exp Clin Endocrinol Diabetes 119(3):151–155
Benekli M, Yalcin S, Ozkan M, Elkiran ET, Sevinc A, Cabuk D et al (2015) Efficacy of sorafenib in advanced differentiated and medullary thyroid cancer: experience in a Turkish population. Onco Targets Ther 8:1–5
Kocsis J, Szekanecz E, Bassam A, Uhlyarik A, Papai Z, Rubovszky G et al (2019) First line sorafenib treatment for metastatic medullary thyroid cancer: efficacy and safety analysis. Exp Clin Endocrinol Diabetes 127(4):240–246
Mendel DB, Laird AD, Xin X, Louie SG, Christensen JG, Li G et al (2003) In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 9(1):327–337
Kumar R, Knick VB, Rudolph SK, Johnson JH, Crosby RM, Crouthamel MC et al (2007) Pharmacokinetic-pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity. Mol Cancer Ther 6(7):2012–2021
Hu-Lowe DD, Zou HY, Grazzini ML, Hallin ME, Wickman GR, Amundson K et al (2008) Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1, 2, 3. Clin Cancer Res 14(22):7272–7283
Capdevila J, Trigo JM, Aller J, Manzano JL, Adrian SG, Llopis CZ et al (2017) Axitinib treatment in advanced RAI-resistant differentiated thyroid cancer (DTC) and refractory medullary thyroid cancer (MTC). Eur J Endocrinol 177(4):309–317
Matsui J, Yamamoto Y, Funahashi Y, Tsuruoka A, Watanabe T, Wakabayashi T et al (2008) E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int J Cancer 122(3):664–671
Tohyama O, Matsui J, Kodama K, Hata-Sugi N, Kimura T, Okamoto K et al (2014) Antitumor activity of lenvatinib (e7080): an angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models. J Thyroid Res 2014:638747
Boss DS, Glen H, Beijnen JH, Keesen M, Morrison R, Tait B et al (2012) A phase I study of E7080, a multitargeted tyrosine kinase inhibitor, in patients with advanced solid tumours. Br J Cancer 106(10):1598–1604
Matsui J, Minoshima Y, Tsuruoka A, Funahashi Y (2010) Multi-targeted kinase inhibitor E7080 showed anti-tumor activity against medullary thyroid carcinoma and squamous thyroid carcinoma cell line based on RET and VEGFR2 tyrosine kinase inhibition. AACR 70:3614
Brose MS, Bible KC, Chow LQM, Gilbert J, Grande C, Worden F et al (2018) Management of treatment-related toxicities in advanced medullary thyroid cancer. Cancer Treat Rev 66:64–73
Subbiah V, Velcheti V, Tuch BB, Ebata K, Busaidy NL, Cabanillas ME et al (2018) Selective RET kinase inhibition for patients with RET-altered cancers. Ann Oncol 29(8):1869–1876
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Laçin, Ş., Yalcin, S. (2024). Medullary Thyroid Cancer. In: Yalcin, S., Öberg, K. (eds) Neuroendocrine Tumours. Springer, Cham. https://doi.org/10.1007/978-3-031-56968-5_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-56968-5_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-56967-8
Online ISBN: 978-3-031-56968-5
eBook Packages: MedicineMedicine (R0)