Skip to main content

Optimized Vehicle Repair Cost by Means of Smart Repair Distribution Model

  • Conference paper
  • First Online:
Proceedings of the Second International Conference on Advances in Computing Research (ACR’24) (ACR 2024)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 956))

Included in the following conference series:

  • 85 Accesses

Abstract

The distribution of vehicle damages to bodyshops is not cost-effective. Every damage is unique, and every bodyshop has its specialization(s). Currently, the distribution of damages to bodyshops is predominately based on the distance between the customer and the bodyshop. This paper provides a method to optimize the distribution of vehicle damages to bodyshops in a way that the repair is executed by the most cost-effective bodyshop available for a particular damage based on damage and context characteristics. Three machine learning models have been evaluated to determine which is most suitable for predicting the cost of repair for one particular damage for each bodyshop available. The neural network produced the best results with an average error of €383. In order to apply this approach to real-world problems, we highlight the use of data from visual assessment of the damages using computer vision technology and onboard vehicle data in order to yield the biggest improvement in the average prediction error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bakar, N.M.A., Tahir, I.M.: Applying Multiple Linear Regression and Neural Network to Predict Bank Performance. Int. Bus. Res. 2 (2009). https://doi.org/10.5539/ibr.v2n4p176

  2. Adnan, N., Ahmad, M., Adnan, R.: A comparative study on some methods for handling multicollinearity problems. Matematika 22, 109–119 (2006)

    Google Scholar 

  3. Predicting performance measures using linear regression and neural network: a comparison 1, 84–89 (2013)

    Google Scholar 

  4. Berrar, D.: Cross-Validation (2018). https://doi.org/10.1016/B978-0-12-809633-8.20349-X

  5. Botchkarev, A.: A new typology design of performance metrics to measure errors in machine learning regression algorithms. Interdiscipl. J. Inf. Knowl. Manag. 14, 045–076 (2019). https://doi.org/10.28945/4184

    Article  Google Scholar 

  6. Caruana, R., Lawrence, S., Giles, C.: Overfitting in neural nets: backpropagation, conjugate gradient, and early stopping. Adv. Neural. Inf. Process. Syst. 13, 402–408 (2000)

    Google Scholar 

  7. Chai, T., Draxler, R.R.: Root mean square error (RMSE) or mean absolute error (MAE)?- Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 7(2014), 1247–1250 (2014). https://doi.org/10.5194/gmd-7-1247-2014

    Article  Google Scholar 

  8. ControlExpert. [n.d.]. https://www.controlexpert.com/. Accessed 23 Jun 2021

  9. Daoud, J.I.: Multicollinearity and regression analysis. J. Phys: Conf. Ser. 949, 12009 (2017). https://doi.org/10.1088/1742-6596/949/1/012009

    Article  Google Scholar 

  10. Dave, V., Shah, K.: Comparative analysis of regularization techniques in arteficial neural networks (2019). https://doi.org/10.1729/Journal.22756

  11. Hurwitz, J., Kirsch, D.: Machine Learning for Dummies. Wiley, Hoboken (2018)

    Google Scholar 

  12. Imandoust, S.B., Bolandraftar, M.: Application of K-nearest neighbor (KNN) approach for predicting economic events theoretical background. Int. J. Eng. Res. Appl. 3, 605–610 (2013)

    Google Scholar 

  13. Jahn, M.: Artificial neural network regression models: predicting GDP growth. HWWI Research Papers 185. Hamburg Institute of International Economics (HWWI) (2018)

    Google Scholar 

  14. Jayawardena, S.: Image-Based Automatic Vehicle Damage Detection. Ph.D. Dissertation (2013)

    Google Scholar 

  15. Khamis, A., Ismail, Z., Khalid, H., Mohammed, A.: The effects of outliers data on neural network performance. J. Appl. Sci. 5, 1394–1398 (2005)

    Article  Google Scholar 

  16. Khamis, H.: Measures of association: how to choose? J. Diagnostic Med. Sonography 24(2008), 155–162 (2008). https://doi.org/10.1177/8756479308317006

    Article  Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017). arXiv:cs.LG/1412.6980

  18. KPMG. Automotive Data Sharing (2020). https://assets.kpmg/content/dam/kpmg/no/pdf/2020/11/Automotive_Data_Sharing_Final%20Report_SVV_KPMG.pdf

  19. McKinsey. Connected car, automotive value chain unbound. Technical Report (2014)

    Google Scholar 

  20. Mirkin, B.: Core Data Analysis: Summarization, Correlation, and Visualization. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-00271-8

    Book  Google Scholar 

  21. Obite, C., Olewuezi, N., Ugwuanyim, G., Bartholomew, D.: Multicollinearity effect in regression analysis: a feed forward artificial neural network approach. Asian J. Probabil. Stat. 22–33 (2020). https://doi.org/10.9734/ajpas/2020/v6i130151

  22. Potdar, K., Pardawala, T., Pai, C.: A comparative study of categorical variable encoding techniques for neural network classifiers. Int. J. Comput. Appl. 175, 7–9 (2017). https://doi.org/10.5120/ijca2017915495

    Article  Google Scholar 

  23. Raschka, S.: Model evaluation, model selection, and algorithm selection in machine learning. CoRR abs/1811.12808 (2018). arXiv: http://arxiv.org/abs/1811.12808

  24. Sharma, S., Sharma, S., Athaiya, A.: Activation functions in neural networks. Int. J. Eng. Appl. Sci. Technol. 4(12), 310–316 (2020)

    Google Scholar 

  25. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, Vol. 25. Curran Associates, Inc. (2012). https://proceedings.neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf

  26. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  Google Scholar 

  27. Statsmodels.org. Patsy: Contrast Coding Systems for categorical variables (2021). https://www.statsmodels.org/dev/contrasts.html#sum-deviation-coding. Accessed 25 May 2021

  28. Tate, R.: Correlation between a discrete and a continuous variable point-biserial correlation. Ann. Math. Stat. 25(3), 603–607 (1954)

    Article  MathSciNet  Google Scholar 

  29. Keras team. Keras Tuner documentation (2021). https://keras-team.github.io/keras-tuner/. Accessed 26 May 2021

  30. van Dijk, M., Harnam, I., Koudijs, D., Botden, M.: Visie door Data - Moving forward in Mobility. Technical Report (2018)

    Google Scholar 

  31. Vermeulen, I.: Gemiddeld schadebedrag boven 1.300 euro-grens (2020). https://automotive-online.nl/management/laatste-nieuws/schade/27000-arbeidsloon-en-hogere-onderdelenkosten-zorgen-voor-stijgend-schadebedrag. Accessed 5 Mar 2021

  32. Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30, 79–82 (2005). https://doi.org/10.3354/cr030079

    Article  Google Scholar 

  33. Yang, Z., Zhang, A., Sudjianto, A.: Enhancing Explainability of Neural Networks through Architecture Constraints (2019). arXiv:stat.ML/1901.03838

  34. Peys, R.: Noodklok over sterk gestegen kosten schadeherstel (2022). https://www.automobielmanagement.nl/autoschadeherstel/2022/09/12/noodklok-over-sterk-gestegen-kosten-schadeherstel/. Accessed 12 Jan 2024

  35. Gareth Roberts. 40% rise in vehicle repair costs over past five years (2023). https://www.fleetnews.co.uk/news/fleet-industry-news/2023/03/22/40-rise-in-vehicle-repair-costs. Accessed 12 Jan 2014

  36. eurostat. Glossary:Passenger car. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Passenger_car. Accessed 16 Jan 2024

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck van der Sluis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

der Sluis, F.v., Rivero, C.R., Hooi, J. (2024). Optimized Vehicle Repair Cost by Means of Smart Repair Distribution Model. In: Daimi, K., Al Sadoon, A. (eds) Proceedings of the Second International Conference on Advances in Computing Research (ACR’24). ACR 2024. Lecture Notes in Networks and Systems, vol 956. Springer, Cham. https://doi.org/10.1007/978-3-031-56950-0_15

Download citation

Publish with us

Policies and ethics