Skip to main content

Cultivating Diversity: A Comparison of Diversity Objectives in Neuroevolution

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14635))

Abstract

Inspired by biological evolution’s ability to produce complex and intelligent beings, neuroevolution utilizes evolutionary algorithms for optimizing the connection weights and structure of artificial neural networks. With evolutionary algorithms often failing to produce the same level of diversity as biological evolution, explicitly encouraging diversity with additional optimization objectives has emerged as a successful approach. However, there is a lack of knowledge regarding the performance of different types of diversity objectives on problems with different characteristics. In this paper, we perform a systematic comparison between objectives related to structural diversity, behavioral diversity, and our newly proposed representational diversity. We explore these objectives’ effects on problems with different levels of modularity, regularity, deceptiveness and discreteness and find clear relationships between problem characteristics and the effect of different diversity objectives – suggesting that there is much to be gained from adapting diversity objectives to the specific problem being solved.

Source code: https://github.com/dreilstad/Neuroevolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.uio.no/english/services/it/research/hpc/fox/.

References

  1. Clune, J., Mouret, J.B., Lipson, H.: The evolutionary origins of modularity. Proceedings. Biological sciences / The Royal Society 280, 20122863 (07 2013). https://doi.org/10.1098/rspb.2012.2863

  2. Cuccu, G., Gomez, F.: When novelty is not enough. In: Proceedings of the 2011 International Conference on Applications of Evolutionary Computation - Volume Part I. p. 234–243. EvoApplications’11, Springer-Verlag, Berlin, Heidelberg (2011)

    Google Scholar 

  3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  4. Deb, K.: Multi-objective optimization using evolutionary algorithms (2008)

    Google Scholar 

  5. Doncieux, S., Mouret, J.B.: Behavioral diversity measures for evolutionary robotics. In: IEEE congress on evolutionary computation. pp. 1–8. IEEE (2010)

    Google Scholar 

  6. Ellefsen, K.O., Huizinga, J., Torresen, J.: Guiding neuroevolution with structural objectives. Evol. Comput. 28(1), 115–140 (2020). https://doi.org/10.1162/evco_a_00250

    Article  Google Scholar 

  7. Gomez, F.: Sustaining diversity using behavioral information distance. pp. 113–120 (01 2009). https://doi.org/10.1145/1569901.1569918

  8. Griffiths, T.D., Ekárt, A.: Improving the tartarus problem as a benchmark in genetic programming. In: McDermott, J., Castelli, M., Sekanina, L., et al. (eds.) Genetic programming, pp. 278–293. Lecture Notes in Computer Science, Springer, NLD (March (2017)

    Chapter  Google Scholar 

  9. Huizinga, J., Mouret, J.B., Clune, J.: Does Aligning Phenotypic and Genotypic Modularity Improve the Evolution of Neural Networks? In: Proceedings of the 25th Genetic and Evolutionary Computation Conference (GECCO). pp. 125–132. ACM, Denver, France (2016). https://doi.org/10.1145/2908812.2908836

  10. Kashtan, N., Alon, U.: Spontaneous evolution of modularity and network motifs. Proc. Natl. Acad. Sci. 102(39), 13773–13778 (2005). https://doi.org/10.1073/pnas.0503610102

    Article  Google Scholar 

  11. Kornblith, S., Norouzi, M., Lee, H., Hinton, G.: Similarity of neural network representations revisited. In: International Conference on Machine Learning. pp. 3519–3529. PMLR (2019)

    Google Scholar 

  12. Krčah, P.: Solving deceptive tasks in robot body-brain co-evolution by searching for behavioral novelty. In: 2010 10th International Conference on Intelligent Systems Design and Applications. pp. 284–289 (2010). https://doi.org/10.1109/ISDA.2010.5687250

  13. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  14. Lehman, J., Chen, J., Clune, J., Stanley, K.O.: Safe mutations for deep and recurrent neural networks through output gradients. CoRR abs/1712.06563 (2017)

    Google Scholar 

  15. Lehman, J., Stanley, K.: Abandoning objectives: Evolution through the search for novelty alone. Evolutionary computation 19, 189–223 (06 2011). https://doi.org/10.1162/EVCO_a_00025

  16. Lehman, J., Stanley, K.O.: Evolving a diversity of virtual creatures through novelty search and local competition. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation. p. 211–218. GECCO ’11, Association for Computing Machinery, New York, NY, USA (2011). https://doi.org/10.1145/2001576.2001606

  17. Lehman, J., Stanley, K.O., Miikkulainen, R.: Effective diversity maintenance in deceptive domains. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation. p. 215–222. GECCO ’13, Association for Computing Machinery, New York, NY, USA (2013). https://doi.org/10.1145/2463372.2463393

  18. Li, J., Storie, J., Clune, J.: Encouraging creative thinking in robots improves their ability to solve challenging problems. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation. p. 193–200. GECCO ’14, Association for Computing Machinery, New York, NY, USA (2014). https://doi.org/10.1145/2576768.2598222

  19. Mountcastle, V.B.: The columnar organization of the neocortex. Brain: a journal of neurology 120(4), 701–722 (1997)

    Google Scholar 

  20. Mouret, J.B.: Novelty-Based Multiobjectivization, vol. 341, pp. 139–154 (02 2011). https://doi.org/10.1007/978-3-642-18272-3_10

  21. Mouret, J.B., Clune, J.: Illuminating search spaces by mapping elites. ArXiv abs/1504.04909 (2015)

    Google Scholar 

  22. Mouret, J.B., Doncieux, S.: Using Behavioral Exploration Objectives to Solve Deceptive Problems in Neuro-evolution. In: The 11th Annual conference on Genetic and evolutionary computation (GECCO’09). pp. 627–634. ACM, Montréal, Canada (2009). https://doi.org/10.1145/1569901.1569988

  23. Mouret, J.B., Doncieux, S.: Encouraging Behavioral Diversity in Evolutionary Robotics: an Empirical Study. Evol. Comput. 20(1), 91–133 (2012). https://doi.org/10.1162/EVCO_a_00048

    Article  Google Scholar 

  24. Reilstad, D.S.: Cultivating Diversity: a Comparison of Diversity Objectives in Neuroevolution. Master’s thesis, University of Oslo (2023), https://www.duo.uio.no/handle/10852/103916

  25. Rothlauf, F., Rothlauf, F.: Representations for genetic and evolutionary algorithms. Springer (2006)

    Google Scholar 

  26. Stanley, K., Clune, J., Lehman, J., Miikkulainen, R.: Designing neural networks through neuroevolution. Nature Machine Intelligence 1 (01 2019). https://doi.org/10.1038/s42256-018-0006-z

  27. Striedter, G.F.: Principles of brain evolution. Sinauer associates (2005)

    Google Scholar 

  28. Toffolo, A., Benini, E.: Genetic diversity as an objective in multi-objective evolutionary algorithms. Evol. Comput. 11(2), 151–167 (may 2003). https://doi.org/10.1162/106365603766646816

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Olav Ellefsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Reilstad, D.S., Ellefsen, K.O. (2024). Cultivating Diversity: A Comparison of Diversity Objectives in Neuroevolution. In: Smith, S., Correia, J., Cintrano, C. (eds) Applications of Evolutionary Computation. EvoApplications 2024. Lecture Notes in Computer Science, vol 14635. Springer, Cham. https://doi.org/10.1007/978-3-031-56855-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56855-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56854-1

  • Online ISBN: 978-3-031-56855-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics