Skip to main content

Hilbert Curves for Efficient Exploratory Landscape Analysis Neighbourhood Sampling

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2024)

Abstract

Landscape analysis aims to characterise optimisation problems based on their objective (or fitness) function landscape properties. The problem search space is typically sampled, and various landscape features are estimated based on the samples. One particularly salient set of features is information content, which requires the samples to be sequences of neighbouring solutions, such that the local relationships between consecutive sample points are preserved. Generating such spatially correlated samples that also provide good search space coverage is challenging. It is therefore common to first obtain an unordered sample with good search space coverage, and then apply an ordering algorithm such as the nearest neighbour to minimise the distance between consecutive points in the sample. However, the nearest neighbour algorithm becomes computationally prohibitive in higher dimensions, thus there is a need for more efficient alternatives. In this study, Hilbert space-filling curves are proposed as a method to efficiently obtain high-quality ordered samples. Hilbert curves are a special case of fractal curves, and guarantee uniform coverage of a bounded search space while providing a spatially correlated sample. We study the effectiveness of Hilbert curves as samplers, and discover that they are capable of extracting salient features at a fraction of the computational cost compared to Latin hypercube sampling with post-factum ordering. Further, we investigate the use of Hilbert curves as an ordering strategy, and find that they order the sample significantly faster than the nearest neighbour ordering, without sacrificing the saliency of the extracted features.

Supported by the National Research Foundation of South Africa Thuthuka Grant Number 138194/TTK210316590115.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://pypi.org/project/pflacco/.

  2. 2.

    Python’s time.perf_counter.

  3. 3.

    This leave-one-instance out approach is used instead of the leave-one-problem out approach due to the small number of classes.

References

  1. Abel, D.J., Mark, D.M.: A comparative analysis of some two-dimensional orderings. Int. J. Geogr. Inf. Syst. 4(1), 21–31 (1990). https://doi.org/10.1080/02693799008941526

    Article  Google Scholar 

  2. Beham, A., Wagner, S., Affenzeller, M.: Algorithm selection on generalized quadratic assignment problem landscapes. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018, pp. 253–260. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3205455.3205585

  3. Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011). https://doi.org/10.1016/j.swevo.2011.02.002

    Article  Google Scholar 

  4. Dwivedi, R., et al.: Explainable ai (xai): core ideas, techniques, and solutions. ACM Comput. Surv. 55(9) ( 2023). https://doi.org/10.1145/3561048

  5. Falconer, K.: Fractal geometry: mathematical foundations and applications. John Wiley & Sons (2004)

    Google Scholar 

  6. Faloutsos, C., Roseman, S.: Fractals for secondary key retrieval. In: Proceedings of the Eighth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, PODS 1989. pp. 247–252. Association for Computing Machinery, New York (1989). https://doi.org/10.1145/73721.73746

  7. Hansen, N., Auger, A., Ros, R., Mersmann, O., Tušar, T., Brockhoff, D.: COCO: A platform for comparing continuous optimizers in a black-box setting. Optimiz. Methods Softw. 36(1), 114–144 (2020). https://doi.org/10.1080/10556788.2020.1808977

    Article  MathSciNet  Google Scholar 

  8. Hansen, N., Finck, S., Ros, R., Auger, A.: Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions. Research Report RR-6829, INRIA (2009). https://inria.hal.science/inria-00362633

  9. Heinonen, J.: Lectures on Analysis on Metric Spaces. Springer Science & Business Media (2001). https://doi.org/10.1007/978-1-4613-0131-8

  10. Hilbert, D.: Über die stetige abbildung einer linie auf ein flächenstück. In: Dritter Band: analysis\(\cdot \) Grundlagen der Mathematik\(\cdot \) Physik Verschiedenes, pp. 1–2. Springer (1935)

    Google Scholar 

  11. Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 184–192 (1995)

    Google Scholar 

  12. Kerschke, P., Trautmann, H.: Comprehensive feature-based landscape analysis of continuous and constrained optimization problems using the r-package flacco. In: Bauer, N., Ickstadt, K., Lübke, K., Szepannek, G., Trautmann, H., Vichi, M. (eds.) Applications in Statistical Computing. SCDAKO, pp. 93–123. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25147-5_7

    Chapter  Google Scholar 

  13. Kostovska, A., Jankovic, A., Vermetten, D., Džeroski, S., Eftimov, T., Doerr, C.: Comparing algorithm selection approaches on black-box optimization problems. In: Proceedings of the Companion Conference on Genetic and Evolutionary Computation. ACM (Jul 2023). https://doi.org/10.1145/3583133.3590697

  14. Kuk, J., Goncalves, R., Pozo, A.: Combining fitness landscape analysis and adaptive operator selection in multi and many-objective optimization. In: 2019 8th Brazilian Conference on Intelligent Systems (BRACIS). IEEE (Oct 2019). https://doi.org/10.1109/bracis.2019.00094

  15. Lang, R.D., Engelbrecht, A.P.: Decision space coverage of random walks. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020), https://doi.org/10.1109/CEC48606.2020.9185623

  16. Liefooghe, A., Malan, K.M.: Adaptive landscape-aware constraint handling with application to binary knapsack problem. In: Proceedings of the Companion Conference on Genetic and Evolutionary Computation. ACM (Jul 2023). https://doi.org/10.1145/3583133.3596405

  17. Malan, K.M.: Landscape-aware constraint handling applied to differential evolution. In: Fagan, D., Martín-Vide, C., O’Neill, M., Vega-Rodríguez, M.A. (eds.) TPNC 2018. LNCS, vol. 11324, pp. 176–187. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04070-3_14

    Chapter  Google Scholar 

  18. Malan, K.M.: A survey of advances in landscape analysis for optimisation. Algorithms 14(2), 40 (2021). https://doi.org/10.3390/a14020040

    Article  MathSciNet  Google Scholar 

  19. Malan, K.M., Engelbrecht, A.P.: Quantifying ruggedness of continuous landscapes using entropy. In: 2009 IEEE Congress on Evolutionary Computation, pp. 1440–1447 (2009). https://doi.org/10.1109/CEC.2009.4983112

  20. Malan, K.M., Engelbrecht, A.P.: Ruggedness, funnels and gradients in fitness landscapes and the effect on PSO performance. In: 2013 IEEE Congress on Evolutionary Computation. IEEE (Jun 2013). https://doi.org/10.1109/cec.2013.6557671

  21. Malan, K.M., Engelbrecht, A.P.: A survey of techniques for characterising fitness landscapes and some possible ways forward. Inf. Sci. 241, 148–163 (2013). https://doi.org/10.1016/j.ins.2013.04.015

    Article  Google Scholar 

  22. Malan, K.M., Engelbrecht, A.P.: A progressive random walk algorithm for sampling continuous fitness landscapes. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 2507–2514. IEEE (2014). https://doi.org/10.1109/CEC.2014.6900576

  23. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42(1), 55–61 (2000). https://doi.org/10.1080/00401706.2000.10485979

    Article  Google Scholar 

  24. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.: Exploratory landscape analysis. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 829–836 (2011). https://doi.org/10.1145/2001576.2001690

  25. Muñoz, M.A., Kirley, M., Halgamuge, S.K.: Exploratory landscape analysis of continuous space optimization problems using information content. IEEE Trans. Evol. Comput. 19(1), 74–87 (2015). https://doi.org/10.1109/TEVC.2014.2302006

    Article  Google Scholar 

  26. Ochoa, G., Tomassini, M., Vérel, S., Darabos, C.: A Study of NK Landscapes’ Basins and Local Optima Networks. In: Proceedings of Genetic and Evolutionary Computation Conference, pp. 555–562 (July 2008)

    Google Scholar 

  27. Pitzer, E., Affenzeller, M., Beham, A., Wagner, S.: Comprehensive and automatic fitness landscape analysis using HeuristicLab. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2011. LNCS, vol. 6927, pp. 424–431. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27549-4_54

    Chapter  Google Scholar 

  28. Renau, Q., Doerr, C., Dreo, J., Doerr, B.: Exploratory landscape analysis is strongly sensitive to the sampling strategy. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12270, pp. 139–153. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58115-2_10

    Chapter  Google Scholar 

  29. Renau, Q., Dreo, J., Doerr, C., Doerr, B.: Expressiveness and robustness of landscape features. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2019, pp. 2048–2051. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3319619.3326913

  30. Rivest, R.L.: Partial-match retrieval algorithms. SIAM J. Comput. 5(1), 19–50 (1976). https://doi.org/10.1137/0205003

    Article  MathSciNet  Google Scholar 

  31. Sagan, H.: Space-filling curves. Springer Science & Business Media (2012). https://doi.org/10.1007/978-1-4612-0871-6

  32. Sallam, K.M., Elsayed, S.M., Sarker, R.A., Essam, D.L.: Landscape-assisted multi-operator differential evolution for solving constrained optimization problems. Expert Syst. Appl. 162, 113033 (2020). https://doi.org/10.1016/j.eswa.2019.113033

    Article  Google Scholar 

  33. Skilling, J.: Programming the Hilbert curve. In: Bayesian Inference and Maximum Entropy Methods in Science and Engineering. American Institute of Physics Conference Series, vol. 707, pp. 381–387 (Apr 2004). https://doi.org/10.1063/1.1751381

  34. van Aardt, W.A., Bosman, A.S., Malan, K.M.: Characterising neutrality in neural network error landscapes. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 1374–1381 (2017). https://doi.org/10.1109/CEC.2017.7969464

  35. Vassilev, V.K., Fogarty, T.C., Miller, J.F.: Information characteristics and the structure of landscapes. Evol. Comput. 8(1), 31–60 (2000). https://doi.org/10.1162/106365600568095

    Article  Google Scholar 

  36. Vassilev, V.K., Fogarty, T.C., Miller, J.F.: Smoothness, ruggedness and neutrality of fitness landscapes: from theory to application. In: Advances in evolutionary computing, pp. 3–44. Springer (2003). https://doi.org/10.1007/978-3-642-18965-4_1

  37. Verel, S., Liefooghe, A., Jourdan, L., Dhaenens, C.: On the structure of multiobjective combinatorial search space: MNK-landscapes with correlated objectives. Eur. J. Oper. Res. 227(2), 331–342 (2013). https://doi.org/10.1016/j.ejor.2012.12.019

    Article  MathSciNet  Google Scholar 

  38. Weinberger, E.: Correlated and uncorrelated fitness landscapes and how to tell the difference. Biol. Cybern. 63(5), 325–336 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine M. Malan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pienaar, J.J., Boman, A.S., Malan, K.M. (2024). Hilbert Curves for Efficient Exploratory Landscape Analysis Neighbourhood Sampling. In: Smith, S., Correia, J., Cintrano, C. (eds) Applications of Evolutionary Computation. EvoApplications 2024. Lecture Notes in Computer Science, vol 14635. Springer, Cham. https://doi.org/10.1007/978-3-031-56855-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56855-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56854-1

  • Online ISBN: 978-3-031-56855-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics