Skip to main content

An Evolutionary Deep Learning Approach for Efficient Quantum Algorithms Transpilation

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2024)

Abstract

Gate-based quantum computation describes algorithms as quantum circuits. These can be seen as a set of quantum gates acting on a set of qubits. To be executable, the circuit requires complex transformations to comply with the physical constraints of the machines. This process is known as transpilation, where qubits’ layout initialisation is one of its first and most challenging steps, usually done by considering the device error properties. As the size of the quantum algorithm increases, the transpilation becomes increasingly complex and time-consuming. This constitutes a bottleneck towards agile, fast, and error-robust quantum computation. This work proposes an evolutionary deep neural network that learns the qubits’ layout initialisation of the most advanced and complex IBM heuristic used in today’s quantum machines. The aim is to progressively replace weakly scalable transpilation heuristics with machine learning models. Previous work using machine learning models for qubits’ layout initialisation suffers from some shortcomings in the proposal’s correctness and generalisation as well as benchmarks diversity, utility, and availability. The present work solves those flaws by (I) devising a complete Machine Learning pipeline including the ETL component and the evolutionary deep neural model using the linkage learning algorithm P3, (II) a modelling applicable to any quantum algorithm with a special interest to both optimisation and machine learning ones, (III) diverse and fresh benchmarks using calibration data of four real IBM quantum computers collected over 10 months (Dec. 2022 and Oct. 2023) and training dataset built using four types of quantum optimisation and machine learning algorithms, as well as random ones. The proposal has been proven to be more efficient and simple than state-of-the-art deep neural models in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the sake of brevity, we omit the word “layout” in “qubits’ layout initialization”.

  2. 2.

    https://github.com/brianwgoldman/FastEfficientP3.

References

  1. Acampora, G., Schiattarella, R.: Deep neural networks for quantum circuit mapping. Neural Comput. Appl. 33(20), 13723–13743 (2021). https://doi.org/10.1007/s00521-021-06009-3

    Article  Google Scholar 

  2. Bahreini, T., Mohammadzadeh, N.: An minlp model for scheduling and placement of quantum circuits with a heuristic solution approach. J. Emerg. Technol. Comput. Syst. 12(3) (2015). https://doi.org/10.1145/2766452

  3. Brooks, M.: Beyond quantum supremacy: the hunt for useful quantum computers. Nature 574(7776), 19–21 (2019). https://doi.org/10.1038/d41586-019-02936-3

    Article  Google Scholar 

  4. DAHI, Z.A., Chicano, F., Luque, G.: Replication package for the paper “An evolutionary deep learning approach for efficient quantum algorithms transpilation" (2023). https://doi.org/10.5281/zenodo.10141872

  5. Dahi, Z.A., Chicano, F., Luque, G., Alba, E.: Genetic algorithm for qubits initialisation in noisy intermediate-scale quantum machines: the IBM case study. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2022), pp. 1164–1172. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3512290.3528830

  6. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm (2014). https://doi.org/10.48550/arXiv.1411.4028

  7. Goldman, B.W., Punch, W.F.: Parameter-less population pyramid. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation (GECCO 2014), pp. 785–792. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2576768.2598350

  8. Havlíček, V., et al.: Supervised learning with quantum-enhanced feature spaces. Nature 567(7747), 209–212 (2019). https://doi.org/10.1038/s41586-019-0980-2

  9. Hsu, S.H., Yu, T.L.: Optimization by pairwise linkage detection, incremental linkage set, and restricted/back mixing: DSMGA-II. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation (GECCO 2015), pp. 519–526. Association for Computing Machinery, New York (2015). https://doi.org/10.1145/2739480.2754737

  10. LeCompte, T., Qi, F., Yuan, X., Tzeng, N.F., Najafi, M.H., Peng, L.: Graph neural network assisted quantum compilation for qubit allocation. In: Proceedings of the Great Lakes Symposium on VLSI 2023 (GLSVLSI 2023), pp. 415–419. Association for Computing Machinery, New York (2023). https://doi.org/10.1145/3583781.3590300

  11. LeCompte, T., Qi, F., Yuan, X., Tzeng, N.F., Najafi, M.H., Peng, L.: Machine-learning-based qubit allocation for error reduction in quantum circuits. IEEE Trans. Quant. Eng. 4, 1–14 (2023). https://doi.org/10.1109/TQE.2023.3301899

    Article  Google Scholar 

  12. Murali, P., Baker, J.M., Abhari, A.J., Chong, F.T., Martonosi, M.: Noise-adaptive compiler mappings for noisy intermediate-scale quantum computers (2019). https://doi.org/10.48550/ARXIV.1901.11054

  13. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2000)

    Google Scholar 

  14. Pearson, K.: LIII on lines and planes of closest fit to systems of points in space. London, Edinburgh, and Dublin Philos. Magaz. J. Sci. 2(11), 559–572 (1901). https://doi.org/10.1080/14786440109462720

  15. Przewozniczek, M.W., Komarnicki, M.M.: Empirical linkage learning. IEEE Trans. Evol. Comput. 24(6), 1097–1111 (2020). https://doi.org/10.1109/TEVC.2020.2985497

    Article  Google Scholar 

  16. Siraichi, M.Y., Santos, V.F.d., Collange, C., Pereira, F.M.Q.: Qubit allocation. In: Proceedings of the 2018 International Symposium on Code Generation and Optimization (CGO 2018), pp. 113–125. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3168822

  17. Sivarajah, S., Dilkes, S., Cowtan, A., Simmons, W., Edgington, A., Duncan, R.: t|ket\(\rangle \): a retargetable compiler for nisq devices. Quant. Sci. Technol. 6(1), 014003 (2020). https://doi.org/10.1088/2058-9565/ab8e92

  18. Telikani, A., Tahmassebi, A., Banzhaf, W., Gandomi, A.H.: Evolutionary machine learning: a survey. ACM Comput. Surv. 54(8), 1–35 (2021). https://doi.org/10.1145/3467477

  19. Thierens, D.: The linkage tree genetic algorithm. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) Parallel Problem Solving from Nature, PPSN XI, pp. 264–273. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15844-5_27

  20. Thierens, D., Bosman, P.A.: Optimal mixing evolutionary algorithms. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation (GECCO 2011), pp. 617–624. Association for Computing Machinery, New York (2011). https://doi.org/10.1145/2001576.2001661

  21. Zulehner, A., Wille, R.: Compiling SU(4) quantum circuits to IBM QX architectures. In: Proceedings of the 24th Asia and South Pacific Design Automation Conference (ASPDAC 2019), pp. 185–190. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3287624.3287704

Download references

Acknowledgments

The corresponding author declares that this work was made and initially submitted while at the University of Malaga. This research is partially funded by the PID 2020-116727RB-I00 (HUmove) funded by MCIN/AEI/ 10.13039/501100011033; and TAILOR ICT-48 Network (No 952215) funded by EU Horizon 2020 research and innovation programme. This work is also partially funded by the Junta de Andalucia, Spain, under contract QUAL21 010UMA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zakaria Abdelmoiz Dahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dahi, Z.A., Chicano, F., Luque, G. (2024). An Evolutionary Deep Learning Approach for Efficient Quantum Algorithms Transpilation. In: Smith, S., Correia, J., Cintrano, C. (eds) Applications of Evolutionary Computation. EvoApplications 2024. Lecture Notes in Computer Science, vol 14635. Springer, Cham. https://doi.org/10.1007/978-3-031-56855-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56855-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56854-1

  • Online ISBN: 978-3-031-56855-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics