Skip to main content

On the Utility of Probing Trajectories for Algorithm-Selection

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2024)

Abstract

Machine-learning approaches to algorithm-selection typically take data describing an instance as input. Input data can take the form of features derived from the instance description or fitness landscape, or can be a direct representation of the instance itself, i.e. an image or textual description. Regardless of the choice of input, there is an implicit assumption that instances that are similar will elicit similar performance from algorithm, and that a model is capable of learning this relationship. We argue that viewing algorithm-selection purely from an instance perspective can be misleading as it fails to account for how an algorithm ‘views’ similarity between instances. We propose a novel ‘algorithm-centric’ method for describing instances that can be used to train models for algorithm-selection: specifically, we use short probing trajectories calculated by applying a solver to an instance for a very short period of time. The approach is demonstrated to be promising, providing comparable or better results to computationally expensive landscape-based feature-based approaches. Furthermore, projecting the trajectories into a 2-dimensional space illustrates that functions that are similar from an algorithm-perspective do not necessarily correspond to the accepted categorisation of these functions from a human perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We evaluate the effect of this choice later in Sect. 4.3.

  2. 2.

    A classifier trained only on e.g. CMA-ES trajectories can predict any of the three solvers, etc.

References

  1. Alissa, M., Sim, K., Hart, E.: Automated algorithm selection: from feature-based to feature-free approaches. J. Heuristics 29(1), 1–38 (2023). https://doi.org/10.1007/s10732-022-09505-4

    Article  Google Scholar 

  2. Alissa, M., Sim, K., Hart, E.: Algorithm selection using deep learning without feature extraction. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 198–206 (2019)

    Google Scholar 

  3. Ardeh, M., Mei, Y., Zhang, M.: Genetic programming hyper-heuristics with probabilistic prototype tree knowledge transfer for uncertain capacitated arc routing problems. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2020). https://doi.org/10.1109/CEC48606.2020.9185714

  4. Belkhir, N.: Per Instance Algorithm Configuration for Continuous Black Box Optimization. phdthesis, Université Paris-Saclay (2017). https://hal.inria.fr/tel-01669527/document

  5. Belkhir, N., Dréo, J., Savéant, P., Schoenauer, M.: Per instance algorithm configuration of CMA-ES with limited budget. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 681–688. ACM (2017). https://doi.org/10.1145/3071178.3071343

  6. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  7. Cenikj, G., Petelin, G., Doerr, C., Korosec, P., Eftimov, T.: Dynamorep: trajectory-based population dynamics for classification of black-box optimization problems. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2023, Lisbon, Portugal, July 15–19, 2023, pp. 813–821. ACM (2023). https://doi.org/10.1145/3583131.3590401

  8. Derbel, B., Liefooghe, A., Vérel, S., Aguirre, H., Tanaka, K.: New features for continuous exploratory landscape analysis based on the SOO tree. In: Proceedings of Foundations of Genetic Algorithms (FOGA) 2019, pp. 72–86. ACM (2019). https://doi.org/10.1145/3299904.3340308

  9. Finck, S., Hansen, N., Ros, R., Auger, A.: Real-parameter black-box optimization benchmarking 2010: presentation of the noiseless functions (2010). http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf

  10. Hansen, N., Auger, A., Ros, R., Mersmann, O., Tusar, T., Brockhoff, D.: COCO: a platform for comparing continuous optimizers in a black-box setting. Opt. Meth. Software 36(1), 114–144 (2021). https://doi.org/10.1080/10556788.2020.1808977

    Article  MathSciNet  Google Scholar 

  11. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001). https://doi.org/10.1162/106365601750190398

    Article  Google Scholar 

  12. Heins, J., Bossek, J., Pohl, J., Seiler, M., Trautmann, H., Kerschke, P.: A study on the effects of normalized TSP features for automated algorithm selection. Theor. Comput. Sci. 940(Part), 123–145 (2023). https://doi.org/10.1016/j.tcs.2022.10.019

    Article  MathSciNet  Google Scholar 

  13. Jankovic, A., Eftimov, T., Doerr, C.: Towards feature-based performance regression using trajectory data. In: Castillo, P.A., Jiménez Laredo, J.L. (eds.) EvoApplications 2021. LNCS, vol. 12694, pp. 601–617. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72699-7_38

    Chapter  Google Scholar 

  14. Jankovic, A., Vermetten, D., Kostovska, A., de Nobel, J., Eftimov, T., Doerr, C.: Trajectory-based algorithm selection with warm-starting. In: IEEE Congress on Evolutionary Computation, CEC 2022, Padua, Italy, July 18–23, 2022, pp. 1–8. IEEE (2022). https://doi.org/10.1109/CEC55065.2022.9870222

  15. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995 - International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995). https://doi.org/10.1109/ICNN.1995.488968

  16. Kerschke, P., Hoos, H., Neumann, F., Trautmann, H.: Automated algorithm selection: survey and perspectives. Evol. Comput. 27(1), 3–45 (2019)

    Article  Google Scholar 

  17. Kerschke, P., Preuss, M., Wessing, S., Trautmann, H.: Detecting funnel structures by means of exploratory landscape analysis. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2015, pp. 265–272. ACM (2015). https://doi.org/10.1145/2739480.2754642,http://dl.acm.org/citation.cfm?doid=2739480.2754642

  18. Kerschke, P., Preuss, M., Wessing, S., Trautmann, H.: Low-budget exploratory landscape analysis on multiple peaks models. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2016, pp. 229–236. ACM (2016). https://doi.org/10.1145/2908812.2908845

  19. Kostovska, A., et al.: Per-run algorithm selection with warm-starting using trajectory-based features. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tusar, T. (eds.) PPSN 2022, Part I. LNCS, vol. 13398, pp. 46–60. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14714-2_4

  20. Kostovska, A., et al.: Per-run algorithm selection with warm-starting using trajectory-based features. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tusar, T. (eds.) PPSN 2022, pp. 46–60. Springer, Cham (2022)

    Google Scholar 

  21. Kotthoff, L., Kerschke, P., Hoos, H., Trautmann, H.: Improving the state of the art in inexact TSP solving using per-instance algorithm selection. In: Rudolph, G., et al. (eds.) PPSN 2022. LNCS, vol. 8994, pp. 202–217. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19084-6_18

    Chapter  Google Scholar 

  22. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.: Exploratory landscape analysis. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2011, pp. 829–836. ACM (2011). https://doi.org/10.1145/2001576.2001690

  23. Muñoz, M., Kirley, M., Halgamuge, S.: Exploratory landscape analysis of continuous space optimization problems using information content. IEEE Trans. Evol. Comput. 19(1), 74–87 (2015). https://doi.org/10.1109/TEVC.2014.2302006

    Article  Google Scholar 

  24. de Nobel, J., Wang, H., Bäck, T.: Explorative data analysis of time series based algorithm features of CMA-ES variants. In: GECCO 2021: Genetic and Evolutionary Computation Conference, Lille, France, July 10–14, 2021, pp. 510–518. ACM (2021). https://doi.org/10.1145/3449639.3459399

  25. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  Google Scholar 

  26. Pitra, Z., Repický, J., Holena, M.: Landscape analysis of Gaussian process surrogates for the covariance matrix adaptation evolution strategy. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2019, pp. 691–699 (2019). https://doi.org/10.1145/3321707.3321861

  27. Renau, Q.: Landscape-Aware Selection of Metaheuristics for the Optimization of Radar Networks. Ph.D. thesis, Polytechnic Institute of Paris, Palaiseau, France (2022). https://tel.archives-ouvertes.fr/tel-03593606

  28. Renau, Q., Dreo, J., Doerr, C., Doerr, B.: Towards explainable exploratory landscape analysis: extreme feature selection for classifying BBOB functions. In: Castillo, P.A., Jiménez Laredo, J.L. (eds.) EvoApplications 2021. LNCS, vol. 12694, pp. 17–33. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72699-7_2

    Chapter  Google Scholar 

  29. Renau, Q., Dréo, J., Peres, A., Semet, Y., Doerr, C., Doerr, B.: Automated algorithm selection for radar network configuration. In: Fieldsend, J.E., Wagner, M. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2022, pp. 1263–1271. ACM (2022). https://doi.org/10.1145/3512290.3528825

  30. Renau, Q., Dreo, J., Doerr, C., Doerr, B.: Exploratory Landscape Analysis Feature Values for the 24 Noiseless BBOB Functions (2021). https://doi.org/10.5281/zenodo.4449934

  31. Rodríguez, J., Kuncheva, L., Alonso, C.: Rotation forest: a new classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1619–1630 (2006). https://doi.org/10.1109/TPAMI.2006.211

    Article  Google Scholar 

  32. Seiler, M.V., Prager, R.P., Kerschke, P., Trautmann, H.: A collection of deep learning-based feature-free approaches for characterizing single-objective continuous fitness landscapes. In: GECCO 2022: Genetic and Evolutionary Computation Conference, Boston, Massachusetts, USA, July 9–13, 2022, pp. 657–665. ACM (2022). https://doi.org/10.1145/3512290.3528834

  33. Sim, K., Hart, E.: Evolutionary approaches to improving the layouts of instance-spaces. In: Rudolph, G., et al. (eds.) PPSN 2022, Part I. LNCS, vol. 13398, pp. 207–219. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14714-2_15

    Chapter  Google Scholar 

  34. Skvorc, U., Eftimov, T., Korosec, P.: A comprehensive analysis of the invariance of exploratory landscape analysis features to function transformations. In: IEEE Congress on Evolutionary Computation, CEC 2022, Padua, Italy, July 18–23, 2022, pp. 1–8. IEEE (2022). https://doi.org/10.1109/CEC55065.2022.9870313

  35. Song, Y., Bliek, L., Zhang, Y.: Revisit the algorithm selection problem for tsp with spatial information enhanced graph neural networks (2023)

    Google Scholar 

  36. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997). https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  Google Scholar 

  37. Vermetten, D., Hao, W., Sim, K., Hart, E.: To Switch or not to Switch: Predicting the Benefit of Switching between Algorithms based on Trajectory Features - Dataset (2022). https://doi.org/10.5281/zenodo.7249389

  38. Vermetten, D., Wang, H., Sim, K., Hart, E.: To switch or not to switch: predicting the benefit of switching between algorithms based on trajectory features. In: Correia, J., Smith, S., Qaddoura, R. (eds.) Applications of Evolutionary Computation. LNCS, vol. 13989, pp. 335–350. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30229-9_22

    Chapter  Google Scholar 

  39. Zhuang, F., et al.: A comprehensive survey on transfer learning. Proc. IEEE 109(1), 43–76 (2021). https://doi.org/10.1109/JPROC.2020.3004555

    Article  Google Scholar 

Download references

Acknowledgements

The authors are funded by the EPSRC ‘Keep-Learning’ project: EP/V026534/1 and EP/V027182/1

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quentin Renau .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 47 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Renau, Q., Hart, E. (2024). On the Utility of Probing Trajectories for Algorithm-Selection. In: Smith, S., Correia, J., Cintrano, C. (eds) Applications of Evolutionary Computation. EvoApplications 2024. Lecture Notes in Computer Science, vol 14634. Springer, Cham. https://doi.org/10.1007/978-3-031-56852-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56852-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56851-0

  • Online ISBN: 978-3-031-56852-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics