Skip to main content

3D Motion Analysis in MRI Using a Multi-objective Evolutionary k-means Clustering

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2024)

Abstract

Many studies focused on gastric motility require the use of synthetic tracers to map the motion of content. Our study instead takes advantage of an unusual MRI acquisition protocol, combined with multi-objective optimised clustering to map the motion of food (peas, a natural ‘tracer’) in a human stomach. We chose NSGA-II to optimise the starting positions for a modified k-means to create optimum clusters. We compared our optimisation approach with a purely random approach that took an equal amount of processing time. Since we have no ground truth available, we have created alternative measures to evaluate our solutions: if the resulting pea velocities are within an expected range, and if each pea’s motion is correlated with neighbouring peas. We found that the optimised version has a significant improvement over the purely random search. Furthermore, we found many interesting food motion behaviours, such as correlated pea motion and more complex motion dynamics such as collision. Overall we found that the combined optimisation and clustering approach produced interesting findings relating to food dynamics in a human stomach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Maliki, S.F., Vidal, F.P.: Visualisation, optimisation and Machine Learning: application in PET Reconstruction and Pea segmentation in MRI Images. Ph.D. thesis, Bangor University (2020)

    Google Scholar 

  2. Blank, J., Deb, K.: pymoo: multi-Objective Optimization in Python. IEEE Access 8, 89497–89509 (2020). https://doi.org/10.1109/ACCESS.2020.2990567

    Article  Google Scholar 

  3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  4. Deb, K., Sindhya, K., Okabe, T.: Self-adaptive simulated binary crossover for real-parameter optimization. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO 2007, pp. 1187–1194. Association for Computing Machinery, New York (2007). https://doi.org/10.1145/1276958.1277190

  5. Freitas, D.: Novel insights into starch digestion and the glycaemic response: from in vitro digestions to a human study using magnetic resonance imaging (MRI). Ph.D. thesis, Université Paris-Saclay (2018)

    Google Scholar 

  6. Gardner, J., Al-Maliki, S., Lutton, E., Boué, F., Vidal, F.: Recognising specific foods in MRI scans using CNN and visualisation. In: Ritsos, P.D., Xu, K. (eds.) Computer Graphics and Visual Computing (CGVC). The Eurographics Association (2020). https://doi.org/10.2312/cgvc.20201145

  7. Goetze, O., et al.: The effect of macronutrients on gastric volume responses and gastric emptying in humans: a magnetic resonance imaging study. Am. J. Physiol. Gastrointest. Liver Physiol. 292(1), G11–G17 (2007). https://doi.org/10.1152/ajpgi.00498.2005

  8. Goyal, R.K., Guo, Y., Mashimo, H.: Advances in the physiology of gastric emptying. Neurogastroenterol. Motil. 31(4), e13546 (2019). https://doi.org/10.1111/nmo.13546

    Article  Google Scholar 

  9. Hamerly, G., Elkan, C.: Alternatives to the k-means algorithm that find better clusterings. In: Proceedings of the Eleventh International Conference on Information and Knowledge Management, CIKM 2002, pp. 600–607. Association for Computing Machinery, New York (2002). https://doi.org/10.1145/584792.584890

  10. Heissam, K., et al.: Measurement of fasted state gastric antral motility before and after a standard bioavailability and bioequivalence 240 mL drink of water: validation of MRI method against concomitant perfused manometry in healthy participants. PLOS ONE 15(11), e0241441 (2020). https://doi.org/10.1371/journal.pone.0241441. https://dx.plos.org/10.1371/journal.pone.0241441

  11. Kong, F., Singh, R.: A model stomach system to investigate disintegration kinetics of solid foods during gastric digestion. J. Food Sci. 73(5), E202–E210 (2008). https://doi.org/10.1111/j.1750-3841.2008.00745.x

    Article  Google Scholar 

  12. Krishna, K., Narasimha Murty, M.: Genetic k-means algorithm. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 29(3), 433–439 (1999). https://doi.org/10.1109/3477.764879

  13. Kunz, P., Feinle, C., Schwizer, W., Fried, M., Boesiger, P.: Assessment of gastric motor function during the emptying of solid and liquid meals in humans by MRI. J. Magn. Reson. Imaging 9(1), 75–80 (1999). https://doi.org/10.1002/(SICI)1522-2586(199901)9:1<75::AID-JMRI10>3.0.CO;2-I. https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1522-2586(199901)9:1<75::AID-JMRI10>3.0.CO;2-I

  14. Li, Y., Kong, F.: Simulating human gastrointestinal motility in dynamic in vitro models. Compr. Rev. Food Sci. Food Saf. 21(5), 3804–3833 (2022). https://doi.org/10.1111/1541-4337.13007

    Article  MathSciNet  Google Scholar 

  15. Likas, A., Vlassis, N., J. Verbeek, J.: The global k-means clustering algorithm. Pattern Recogn. 36(2), 451–461 (2003). https://doi.org/10.1016/S0031-3203(02)00060-2

  16. Lorensen, W., Cline, H.: Marching cubes: a high resolution 3D surface construction algorithm. Comput. Graph. 21(4), 163–169 (1987)

    Google Scholar 

  17. Maccioni, F., Busato, L., Valenti, A., Cardaccio, S., Longhi, A., Catalano, C.: Magnetic resonance imaging of the gastrointestinal tract: current role, recent advancements and future prospectives. Diagnostics 13(14), 2410 (2023). https://doi.org/10.3390/diagnostics13142410. https://www.mdpi.com/2075-4418/13/14/2410

  18. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability (1967). https://api.semanticscholar.org/CorpusID:6278891

  19. Marciani, L., et al.: Antral motility measurements by magnetic resonance imaging. Neurogastroenterol. Motil. 13(5), 511–518 (2001). https://doi.org/10.1046/j.1365-2982.2001.00285.x

    Article  Google Scholar 

  20. Menys, A., et al.: Spatio-temporal motility MRI analysis of the stomach and colon. Neurogastroenterol. Motil. 31(5), e13557 (2019). https://doi.org/10.1111/nmo.13557. https://onlinelibrary.wiley.com/doi/10.1111/nmo.13557

  21. Nonaka, H., Onishi, H., Watanabe, M., Nam, V.H.: Assessment of abdominal organ motion using cine magnetic resonance imaging in different gastric motilities: a comparison between fasting and postprandial states. J. Radiat. Res. 60(6), 837–843 (2019)

    Article  Google Scholar 

  22. Parker, H.L., et al.: Clinical assessment of gastric emptying and sensory function utilizing gamma scintigraphy: establishment of reference intervals for the liquid and solid components of the nottingham test meal in healthy subjects. Neurogastroenterol. Motil. 29(11), e13122 (2017). https://doi.org/10.1111/nmo.13122

    Article  Google Scholar 

  23. Peña, J., Lozano, J., Larrañaga, P.: An empirical comparison of four initialization methods for the k-means algorithm. Pattern Recogn. Lett. 20(10), 1027–1040 (1999). https://doi.org/10.1016/S0167-8655(99)00069-0

    Article  Google Scholar 

  24. Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit, 4th edn. Kitware (2006)

    Google Scholar 

  25. Spann, C., Al-Maliki, S., Boué, F., Lutton, E., Vidal, F.P.: Interactive visualisation of the food content of a human stomach in MRI. In: Computer Graphics and Visual Computing (CGVC), pp. 47–54. The Eurographics Association (2022). https://doi.org/10.2312/cgvc.20221171

  26. Steingoetter, A., et al.: Magnetic resonance imaging for the in vivo evaluation of gastric-retentive tablets. Pharm. Res. 20(12), 2001–2007 (2003). https://doi.org/10.1023/B:PHAM.0000008049.40370.5a. http://link.springer.com/10.1023/B:PHAM.0000008049.40370.5a

  27. Tao, F., Lin-sheng, L., Qi-chuan, T.: A novel adaptive motion detection based on k-means clustering. In: 2010 3rd International Conference on Computer Science and Information Technology, vol. 3, pp. 136–140 (2010). https://doi.org/10.1109/ICCSIT.2010.5564529

  28. Vidal, F.P., Villard, P.F., Lutton, É.: Tuning of patient-specific deformable models using an adaptive evolutionary optimization strategy. IEEE Trans. Biomed. Eng. 59, 2942–2949 (2012). https://doi.org/10.1109/TBME.2012.2213251

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a STSM Grant from COST Action CA15118 (FoodMC) and the MRI data used in this study were collected at CEA-SHFJ with the support of IR4M CNRS/Orsay University (Xavier Maître and Luc Darrasse) in the framework of the IDI/Paris Saclay PhD of Daniela Freitas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conor Spann .

Editor information

Editors and Affiliations

Ethics declarations

Ethical Approval

The study protocol has been approved by the Ethics Committee Lyon Sud-Est IV, and it has been registered in the Clinical Trial Registry (clinicaltrials.gov; NCT03265392) (see https://clinicaltrials.gov/ct2/show/NCT03265392). All volunteers gave their written informed consent after being provided with oral and written information about the aims and protocol of the study.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Spann, C., Lutton, E., Boué, F., Vidal, F. (2024). 3D Motion Analysis in MRI Using a Multi-objective Evolutionary k-means Clustering. In: Smith, S., Correia, J., Cintrano, C. (eds) Applications of Evolutionary Computation. EvoApplications 2024. Lecture Notes in Computer Science, vol 14634. Springer, Cham. https://doi.org/10.1007/978-3-031-56852-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56852-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56851-0

  • Online ISBN: 978-3-031-56852-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics