Skip to main content

Finding Near-Optimal Portfolios with Quality-Diversity

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2024)

Abstract

The majority of standard approaches to financial portfolio optimization (PO) are based on the mean-variance (MV) framework. Given a risk aversion coefficient, the MV procedure yields a single portfolio that represents the optimal trade-off between risk and return. However, the resulting optimal portfolio is known to be highly sensitive to the input parameters, i.e., the estimates of the return covariance matrix and the mean return vector. It has been shown that a more robust and flexible alternative lies in determining the entire region of near-optimal portfolios. In this paper, we present a novel approach for finding a diverse set of such portfolios based on quality-diversity (QD) optimization. More specifically, we employ the CVT-MAP-Elites algorithm, which is scalable to high-dimensional settings with potentially hundreds of behavioral descriptors and/or assets. The results highlight the promising features of QD as a novel tool in PO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In terms of their distance in the space of admissible portfolio weights or, more generally, some behavior space.

  2. 2.

    In the sense of the Euclidean distance between the portfolio weight vectors \(||\boldsymbol{w_1}-\boldsymbol{w_0}||\).

  3. 3.

    Van Eeghen [14] reports computation times of around 2 hours and more per run already for \(N>20\).

  4. 4.

    Environment, social and governance.

  5. 5.

    More precisely, the assets include the S &P 500 market index, Lehman Brothers Long Term Government Bond Index, and one-month Treasury bills. The original data is presented monthly and spans the period from 1980 to 1990, but the estimates are transformed into annual values in our work.

  6. 6.

    At the start of each QD run, niches are recalculated, discarding the old CVT results.

  7. 7.

    With constant variance set as the shrinkage target.

  8. 8.

    Similar approaches are employed in top-down investment strategies such as Tactical Asset Allocation (TAA) [35].

  9. 9.

    With the QuickHull algorithm [36], the execution time grows by \(n^{\lfloor \frac{d}{2} \rfloor }\), where n is the input size and d the dimensionality.

  10. 10.

    The choice of the estimation window size is a non-trivial issue that has been studied before [38,39,40], with larger sizes leading to reduced estimation errors at the price of assuming unrealistically long stationarity periods.

References

  1. Sharpe, W.F.: The sharpe ratio. Streetwise-the Best J. Portfolio Manag. 3, 169–185 (1998)

    Article  Google Scholar 

  2. Babcock, B.A., Choi, E.K., Feinerman, E.: Risk and probability premiums for cara utility functions. J. Agricult. Resource Econ. 22, 17–24 (1993)

    Google Scholar 

  3. Markowitz, H.M., Todd, G.P.: Mean-variance analysis in portfolio choice and capital markets, vol. 66. John Wiley & Sons (2000)

    Google Scholar 

  4. Best, M.J., Grauer, R.R.: On the sensitivity of mean-variance-efficient portfolios to changes in asset means: some analytical and computational results. Rev. Financial Stud. 4(2), 315–342 (1991)

    Article  Google Scholar 

  5. Ledoit, O., Wolf, M.: Honey, i shrunk the sample covariance matrix. UPF economics and business working paper, vol. (691) (2003)

    Google Scholar 

  6. Black, F., Litterman, R.: Asset allocation: combining investor views with market equilibrium. Goldman Sachs Fixed Income Res. 115(1), 7–18 (1990)

    Google Scholar 

  7. DeMiguel, V., Garlappi, L., Nogales, F.J., Uppal, R.: A generalized approach to portfolio optimization: improving performance by constraining portfolio norms. Manag. Sci. 55(5), 798–812 (2009)

    Article  Google Scholar 

  8. Michaud, R.O., Michaud, R.O.: Efficient asset management: a practical guide to stock portfolio optimization and asset allocation. Oxford University Press (2008)

    Google Scholar 

  9. Yin, C., Perchet, R., Soupé, F.: A practical guide to robust portfolio optimization. Quantitative Finance 21(6), 911–928 (2021)

    Article  MathSciNet  Google Scholar 

  10. de Graaf, T.: Robust Mean-Variance Optimization. PhD thesis, Master Thesis, Leiden University & Ortec Finance (2016)

    Google Scholar 

  11. van der Schans, M., de Graaf, T.: Robust optimization by constructing near-optimal portfolios. Available at SSRN 3057258 (2017)

    Google Scholar 

  12. Wang, L.: Support vector machines: theory and applications, vol. 177. Springer Science & Business Media (2005). https://doi.org/10.1007/b95439

  13. Wales, D.J., Doye, J.P.K.: Global optimization by basin-hopping and the lowest energy structures of lennard-jones clusters containing up to 110 atoms. J. Phys. Chem. A 101(28), 5111–5116 (1997)

    Article  Google Scholar 

  14. van Eeghen, W.J.B., van Gaans, O.W., van der Schans, M.: Analysis of near-optimal portfolio regions and polytope theory (2018)

    Google Scholar 

  15. Cajas, D.: Robust portfolio selection with near optimal centering. Available at SSRN 3572435(2019)

    Google Scholar 

  16. Vijay Kumar Chopra: Improving optimization. J. Invest. 2(3), 51–59 (1993)

    Article  Google Scholar 

  17. Benita, G., Baudot-Trajtenberg, N., Friedman, A.: The challenges of managing large fx reserves: the case of israel. BIS Paper, (104m) (2019)

    Google Scholar 

  18. Fagerström, S., Oddshammar, G.: Portfolio optimization-the mean-variance and cvar approach (2010)

    Google Scholar 

  19. Brabazon, A., O’Neill, M., Dempsey, I.: An introduction to evolutionary computation in finance. IEEE Comput. Intell. Mag. 3(4), 42–55 (2008)

    Article  Google Scholar 

  20. Branke, J., Scheckenbach, B., Stein, M., Deb, K., Schmeck, H.: Portfolio optimization with an envelope-based multi-objective evolutionary algorithm. Eur. J. Oper. Res. 199(3), 684–693 (2009)

    Article  MathSciNet  Google Scholar 

  21. Qi, R., Yen, G.G.: Hybrid bi-objective portfolio optimization with pre-selection strategy. Inform. Sci. 417, 401–419 (2017)

    Article  Google Scholar 

  22. Chatzilygeroudis, K., Cully, A., Vassiliades, V., Mouret, J.-B.: Quality-diversity optimization: a novel branch of stochastic optimization. In: Pardalos, P.M., Rasskazova, V., Vrahatis, M.N. (eds.) Black Box Optimization, Machine Learning, and No-Free Lunch Theorems. SOIA, vol. 170, pp. 109–135. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-66515-9_4

    Chapter  Google Scholar 

  23. Lehman, J., Stanley, K.O.: Novelty search and the problem with objectives. Genetic programming theory and practice IX, pp. 37–56 (2011)

    Google Scholar 

  24. Gomes, J., Urbano, P., Christensen, A.L.: Evolution of swarm robotics systems with novelty search. Swarm Intell. 7, 115–144 (2013)

    Article  Google Scholar 

  25. Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality diversity: a new frontier for evolutionary computation. Front. Robot. AI 3, 40 (2016)

    Article  Google Scholar 

  26. Zhang, T., Li, Y., Jin, Y., Li, J.: Autoalpha: an efficient hierarchical evolutionary algorithm for mining alpha factors in quantitative investment. arXiv preprint arXiv:2002.08245 (2020)

  27. Yuksel, K.A.: Generative meta-learning robust quality-diversity portfolio. In: Proceedings of the Companion Conference on Genetic and Evolutionary Computation, pp. 787–790 (2023)

    Google Scholar 

  28. Vassiliades, V., Mouret, J.-P.: Discovering the elite hypervolume by leveraging interspecies correlation. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 149–156 (2018)

    Google Scholar 

  29. Digalakis, J.G., Margaritis, K.G.: On benchmarking functions for genetic algorithms. Inter. J. Comput. Math. 77(4), 481–506 (2001)

    Article  MathSciNet  Google Scholar 

  30. Bossens, D.M., Tarapore, D.: Quality-diversity meta-evolution: customising behaviour spaces to a meta-objective. arXiv preprint arXiv:2109.03918 (2021)

  31. Sfikas, K., Liapis, A., Yannakakis, G.N.: Monte carlo elites: Quality-diversity selection as a multi-armed bandit problem. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 180–188 (2021)

    Google Scholar 

  32. Vassiliades, V., Chatzilygeroudis, K., Mouret, J.-B.: Using centroidal voronoi tessellations to scale up the multidimensional archive of phenotypic elites algorithm. IEEE Trans. Evol. Comput. 22(4), 623–630 (2017)

    Article  Google Scholar 

  33. Mouret, J.-B., Clune, J.: Illuminating search spaces by mapping elites. arXiv preprint arXiv:1504.04909 (2015)

  34. Fama, E.F., French, K.R.: The capital asset pricing model: theory and evidence. J. Econ. Perspect. 18(3), 25–46 (2004)

    Article  Google Scholar 

  35. Faber, M.: A quantitative approach to tactical asset allocation. J. Wealth Manag. Spring (2007)

    Google Scholar 

  36. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: Qhull: Quickhull algorithm for computing the convex hull. Astrophysics Source Code Library, pp. ascl-1304 (2013)

    Google Scholar 

  37. Flageat, M., Lim, B., Grillotti, L., Allard, M., Smith, S.C., Cully, A.: Benchmarking quality-diversity algorithms on neuroevolution for reinforcement learning. arXiv preprint arXiv:2211.02193 (2022)

  38. Gašperov, B., Šarić, F., Begušić, S., Kostanjčar, Z.: Adaptive rolling window selection for minimum variance portfolio estimation based on reinforcement learning. In: 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO), pp. 1098–1102. IEEE (2020)

    Google Scholar 

  39. Wang, P.-T., Hsieh, C.-H.: On data-driven log-optimal portfolio: a sliding window approach. IFAC-PapersOnLine 55(30), 474–479 (2022)

    Article  Google Scholar 

  40. Chuanzhen, W.: Window effect with markov-switching garch model in cryptocurrency market. Chaos, Solitons Fractals 146, 110902 (2021)

    Article  Google Scholar 

  41. Kelly, J., Hemberg, E., O’Reilly, U.-M.: Improving genetic programming with novel exploration - exploitation control. In: Sekanina, L., Hu, T., Lourenço, N., Richter, H., García-Sánchez, P. (eds.) EuroGP 2019. LNCS, vol. 11451, pp. 64–80. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16670-0_5

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Gašperov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gašperov, B., Đurasević, M., Jakobovic, D. (2024). Finding Near-Optimal Portfolios with Quality-Diversity. In: Smith, S., Correia, J., Cintrano, C. (eds) Applications of Evolutionary Computation. EvoApplications 2024. Lecture Notes in Computer Science, vol 14634. Springer, Cham. https://doi.org/10.1007/978-3-031-56852-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56852-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56851-0

  • Online ISBN: 978-3-031-56852-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics