Abstract
Green hydrogen, produced mainly by electrolysis, is a promising energy carrier to de-fossilise different economy sectors, from heavy industry to logistics. A fully transformed economy would use hydrogen as a process gas and a fuel for heat generation and vehicles. However, since the technology to produce green hydrogen has yet to be available at an industrial scale, there are no projections for forming regional hydrogen hubs. This article contributes to synthesising a holistic framework to specify and optimise hydrogen-based applications in logistics from an ecological and economic perspective. These applications utilise logistics macrostructures, like logistics hubs. Alternatively, they may utilise industrial supply chains, like direct reduced iron (DRI) based steel plants, which modify their operations and transform their logistic ecosystems. The framework includes a configuration of policies and economic boundary conditions that influence the logistic hubs’ transformation paths. The article describes the synthesis of the framework based on an initial problem analysis and a systematic literature review. The framework helps policymakers and planners evaluate and optimise the composition and design of hydrogen and logistics hubs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Chapman, A., et al.: A review of four case studies assessing the potential for hydrogen penetration of the future energy system. Int. J. Hydrogen Energy 44(13), 6371–6382 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.168
Oliveira, A.M., Beswick, R.R., Yan, Y.: A green hydrogen economy for a renewable energy society. Curr. Opin. Chem. Eng. 33, 100701 (2021). https://doi.org/10.1016/j.coche.2021.100701
Moran, C., et al.: A flexible techno-economic analysis tool for regional hydrogen hubs – a case study for Ireland. Int. J. Hydrogen Energy 48(74), 28649–28667 (2023). https://doi.org/10.1016/j.ijhydene.2023.04.100
Notteboom, T., Haralambides, H.: Seaports as green hydrogen hubs: advances, opportunities and challenges in Europe. Marit Econ Logist 25(1), 1–27 (2023). https://doi.org/10.1057/s41278-023-00253-1
Lahnaoui, A., Wulf, C., Heinrichs, H., Dalmazzone, D.: Optimizing hydrogen transportation system for mobility by minimizing the cost of transportation via compressed gas truck in North Rhine-Westphalia. Appl. Energy 223, 317–328 (2018). https://doi.org/10.1016/j.apenergy.2018.03.099
Butturi, M.A. Gamberini, R.: The potential of hydrogen technologies for low-carbon mobility in the urban-industrial symbiosis approach. Int. J. EQ 7, 151–163 (2022). https://doi.org/10.2495/EQ-V7-N2-151-163, https://www.witpress.com/elibrary/eq-volumes/7/2/2905
Ahmed, A., Al-Amin, A.Q., Ambrose, A.F., Saidur, R.: Hydrogen fuel and transport system: a sustainable and environmental future. Int. J. Hydrogen Energy 41(3), 1369–1380 (2016). https://doi.org/10.1016/j.ijhydene.2015.11.084
Jones, J., Genovese, A., Tob-Ogu, A.: Hydrogen vehicles in urban logistics: a total cost of ownership analysis and some policy implications. Renew. Sustain. Energy Rev. 119, 109595 (2020). https://doi.org/10.1016/j.rser.2019.109595
Beermann, M., et al.: Hydrogen powered fuel cell forklifts—demonstration of green warehouse logistics. In: 2013 World Electric Vehicle Symposium and Exhibition (EVS27), Barcelona, Spain, pp. 1–4 (2013). https://doi.org/10.1109/EVS.2013.6914853
Di Ilio, G., Di Giorgio, P., Tribioli, L., Bella, G., Jannelli, E.: Preliminary design of a fuel cell/battery hybrid powertrain for a heavy-duty yard truck for port logistics. Energy Convers. Manage. 243, 114423 (2021). https://doi.org/10.1016/j.enconman.2021.114423
Cunanan, C., Tran, M.-K., Lee, Y., Kwok, S., Leung, V., Fowler, M.: A review of heavy-duty vehicle powertrain technologies: diesel engine vehicles, battery electric vehicles, and hydrogen fuel cell electric vehicles. Clean Technol. 3(2), 474–489 (2021). https://doi.org/10.3390/cleantechnol3020028
Wu, X., Li, H., Wang, X., Zhao, W.: Cooperative operation for wind turbines and hydrogen fueling stations with on-site hydrogen production. IEEE Trans. Sustain. Energy 11(4), 2775–2789 (2020). https://doi.org/10.1109/TSTE.2020.2975609
Bhaskar, A., Assadi, M., Nikpey Somehsaraei, H.: Decarbonization of the iron and steel industry with direct reduction of iron ore with green hydrogen. Energies 13(3), 758 (2020). https://doi.org/10.3390/en13030758
Zhang, X., Jiao, K., Zhang, J., Guo, Z.: A review on low carbon emissions projects of steel industry in the World. J. Clean. Prod. 306, 127259 (2021). https://doi.org/10.1016/j.jclepro.2021.127259
Azadnia, A.H., McDaid, C., Andwari, A.M., Hosseini, S.E.: Green hydrogen supply chain risk analysis: a European hard-to-abate sectors perspective. Renew. Sustain. Energy Rev. 182, 113371 (2023). https://doi.org/10.1016/j.rser.2023.113371
Devlin, A., Yang, A.: Regional supply chains for decarbonising steel: energy efficiency and green premium mitigation. Energy Convers. Manage. (2022). https://doi.org/10.1016/j.enconman.2022.115268
Dagdougui, H.: Models, methods and approaches for the planning and design of the future hydrogen supply chain. Int. J. Hydrogen Energy 37(6), 5318–5327 (2012). https://doi.org/10.1016/j.ijhydene.2011.08.041
Wickham, D., Hawkes, A., Jalil-Vega, F.: Hydrogen supply chain optimisation for the transport sector – focus on hydrogen purity and purification requirements. Appl. Energy 305, 117740 (2022). https://doi.org/10.1016/j.apenergy.2021.117740
Xiao, Y., Watson, M.: Guidance on conducting a systematic literature review. J. Plan. Educ. Res. 39(1), 93–112 (2019). https://doi.org/10.1177/0739456X17723971
Dixon-Woods, M.: Using framework-based synthesis for conducting reviews of qualitative studies. BMC Med. (2011). https://doi.org/10.1186/1741-7015-9-39
Carroll, C., Booth, A., Leaviss, J., Rick, J.: “Best fit” framework synthesis: refining the method. BMC Med. Res. Methodol. (2013). https://doi.org/10.1186/1471-2288-13-37
Anand, N., Yang, M., van Duin, J., Tavasszy, L.: GenCLOn: an ontology for city logistics. Expert Syst. Appl. 39(15), 11944–11960 (2012). https://doi.org/10.1016/j.eswa.2012.03.068, https://www.scopus.com/inward/record.uri?eid=2-s2.0-84863114036&doi=10.1016%2fj.eswa.2012.03.068&partnerID=40&md5=2700ce1f46cc0a5bce017faa5307319c
Li, H., Abd Nikooie Pour, M., Li, Y., Lindecrantz, M., Blomqvist, E., Lambrix, P.: A survey of general ontologies for the cross-industry domain of circular economy. In: ACM Web Conference 2023 - Companion of the World Wide Web Conference, WWW 2023 (2023). https://doi.org/10.1145/3543873.3587613, https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159579810&doi=10.1145%2f3543873.3587613&partnerID=40&md5=442c4f65246ddbef95de27d30ee1a40a
Sinha, D., Roy Chowdhury, S.: A framework for ensuring zero defects and sustainable operations in major Indian ports. Int. J. Qual. Reliabil. Manage. 39(8), 1896–1936 (2022). https://doi.org/10.1108/IJQRM-02-2019-0062, https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082936934&doi=10.1108%2fIJQRM-02-2019-0062&partnerID=40&md5=70de1e5540c88477a2467c565cee7f23
Hehenberger, P., et al.: Holistic system modelling and analysis for energy-aware production: an integrated framework. Systems 11(2), 100 (2023). https://doi.org/10.3390/systems11020100
Wicaksono, H., Jost, F., Rogalski, S., Ovtcharova, J.: Energy efficiency evaluation in manufacturing through an ontology-represented knowledge base. Intell. Syst. Acc. Financ. Manage. 21(1), 59–69 (2014). https://doi.org/10.1002/isaf.1347
Brandmeier, M., Schäfer, F., Kreitlein, S., Franke, J.: Ontology-based description of energy optimization potentials for production environments. AMM 805, 53–60 (2015). https://doi.org/10.4028/www.scientific.net/AMM.805.53
Bersani, C., Minciardi, R., Sacile, R., Trasforini, E.: Network planning of fuelling service stations in a near-term competitive scenario of the hydrogen economy. Soc.-Econ. Plann. Sci. 43(1), 55–71 (2009). https://doi.org/10.1016/j.seps.2008.02.001, https://www.scopus.com/inward/record.uri?eid=2-s2.0-56949086809&doi=10.1016%2fj.seps.2008.02.001&partnerID=40&md5=28d62e1e66da922c4b1b130cbb921d33
Dagdougui, H., Sacile, R., Bersani, C., Ouammi, A.: Hydrogen Infrastructure for Energy Applications: Production, Storage, Distribution and Safety (2018). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046597404&partnerID=40&md5=2614f68c7c15ec24523e71b695d877fc
Wang, B., Li, Z., Zhou, J., Cong, Y., Li, Z.: Technological-economic assessment and optimization of hydrogen-based transportation systems in China: A life cycle perspective. Int. J. Hydrogen Energy 48(33), 12155–12167 (2023). https://doi.org/10.1016/j.ijhydene.2022.12.189, https://www.scopus.com/inward/record.uri?eid=2-s2.0-85145687481&doi=10.1016%2fj.ijhydene.2022.12.189&partnerID=40&md5=3fbab06ed71db1efff3116c3e2dea575
Frankowska, M., Rzeczycki, A., Sowa, M., Drożdż, W.: Functional model of power grid stabilization in the green hydrogen supply chain system—conceptual assumptions. Energies 16(1) (2023). https://doi.org/10.3390/en16010154, https://www.scopus.com/inward/record.uri?eid=2-s2.0-85145658266&doi=10.3390%2fen16010154&partnerID=40&md5=faef7d49ed0dab05ce9b79ffffacf58a
Islam, M.A., Gajpal, Y., ElMekkawy, T.Y.: Mixed fleet based green clustered logistics problem under carbon emission cap. Sustain. Cities Soc. 72 (2021). https://doi.org/10.1016/j.scs.2021.103074, https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107691929&doi=10.1016%2fj.scs.2021.103074&partnerID=40&md5=7105fa4bfd6a9be24cd52c9de06f9194
Kostin, A., Guillén-Gosálbez, G., Jiménez, L.: Dimensionality reduction applied to the simultaneous optimization of the economic and life cycle environmental performance of supply chains. Int. J. Prod. Econ. 159, 223–232 (2015). https://doi.org/10.1016/j.ijpe.2014.09.018, https://www.scopus.com/inward/record.uri?eid=2-s2.0-84915748754&doi=10.1016%2fj.ijpe.2014.09.018&partnerID=40&md5=a3d96133758e5d1d3a87bfe7fbfee819
Shi, Z., Fan, F., Tai, N., Qing, C., Meng, Y., Guo, R.: An optimal operation strategy for integrated energy-logistics system in green port. In: I and CPS Asia 2022 - 2022 IEEE IAS Industrial and Commercial Power System Asia (2022). https://doi.org/10.1109/ICPSAsia55496.2022.9949685, https://www.scopus.com/inward/record.uri?eid=2-s2.0-85143408600&doi=10.1109%2fICPSAsia55496.2022.9949685&partnerID=40&md5=b4f456e1758ece380f39f7e09977a31e
Shi, Z., Fan, F., Tai, N., Shahidehpour, M., Li, C., Yang, H.: Stochastic flexible resource operations in coordinated green-seaport energy-logistics systems using constraint generation approach. IEEE Trans. Transp. Electrif. 1 (2023). https://doi.org/10.1109/TTE.2023.3288384, https://www.scopus.com/inward/record.uri?eid=2-s2.0-85162898823&doi=10.1109%2fTTE.2023.3288384&partnerID=40&md5=fcce65db19d51e254e9b509b37b8d884
Rose, P.K., Neumann, F.: Hydrogen refueling station networks for heavy-duty vehicles in future power systems. Transp. Res. Part D: Transp. Environ. 83 (2020). https://doi.org/10.1016/j.trd.2020.102358, https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085078300&doi=10.1016%2fj.trd.2020.102358&partnerID=40&md5=8af8dec13b8d9b0c40436762549dc6aa
Qian, S., Li, L.: A comparison of well-to-wheels energy use and emissions of hydrogen fuel cell, electric, LNG, and diesel-powered logistics vehicles in China. Energies 16(13) (2023). https://doi.org/10.3390/en16135101, https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164910787&doi=10.3390%2fen16135101&partnerID=40&md5=e96bbb34df39aded4d828b35ee308be7
Yan, J., Jing, J., Li, Y.: Hydrogen fuel cell commercial vehicles in China: evaluation of carbon emission reduction and its economic value. Int. J. Hydrogen Energy (20230. https://doi.org/10.1016/j.ijhydene.2023.04.164, https://www.scopus.com/inward/record.uri?eid=2-s2.0-85154601205&doi=10.1016%2fj.ijhydene.2023.04.164&partnerID=40&md5=0ea7034caec8ea7c7692f496c2c9afed
Alshehri, A., Mogi, G., Endo, R.: Spatial data-based techno-economic evaluation of solar hydrogen production in the middle east and North Africa (MENA) region. In: International Conference on Innovative Smart Grid Technologies, ISGT Asia 2018 (2018). https://doi.org/10.1109/ISGT-Asia.2018.8467781, https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055556711&doi=10.1109%2fISGT-Asia.2018.8467781&partnerID=40&md5=8a3f4f7a7240448fbe8ac488f1f67e74
Godinho, J., Hoefnagels, R., Braz, C.G., Sousa, A.M., Granjo, J.F.: An economic and greenhouse gas footprint assessment of international maritime transportation of hydrogen using liquid organic hydrogen carriers. Energy 278 (2023). https://doi.org/10.1016/j.energy.2023.127673, https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159799036&doi=10.1016%2fj.energy.2023.127673&partnerID=40&md5=b2bb3b5082070a1f1a7b5299d8ef4193
Sun, D., Guo, D., Xie, D.: Using multicriteria decision making to evaluate the risk of hydrogen energy storage and transportation in cities. Sustain. (Switz.) 15(2) (2023). https://doi.org/10.3390/su15021088, https://www.scopus.com/inward/record.uri?eid=2-s2.0-85146613983&doi=10.3390%2fsu15021088&partnerID=40&md5=3fdc24ba115ce09e7f779c5414aa70c8
Almansoori, A., Shah, N.: Design and operation of a future hydrogen supply chain: multi-period model. Int. J. Hydrogen Energy 34(19), 7883–7897 (2009). https://doi.org/10.1016/j.ijhydene.2009.07.109, https://www.scopus.com/inward/record.uri?eid=2-s2.0-70349226658&doi=10.1016%2fj.ijhydene.2009.07.109&partnerID=40&md5=327bffaad05f45808540c899e7da940a
Hurskainen, M., Ihonen, J.: Techno-economic feasibility of road transport of hydrogen using liquid organic hydrogen carriers. Int. J. Hydrogen Energy 45(56), 32098–32112 (2020). https://doi.org/10.1016/j.ijhydene.2020.08.186, https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090977453&doi=10.1016%2fj.ijhydene.2020.08.186&partnerID=40&md5=6ff52711eb99217c270e9e53b6be2a5c
Nunes, P., Oliveira, F., Hamacher, S., Almansoori, A.: Design of a hydrogen supply chain with uncertainty. Int. J. Hydrogen Energy 40(46), 16408–16418 (2015). https://doi.org/10.1016/j.ijhydene.2015.10.015, https://www.scopus.com/inward/record.uri?eid=2-s2.0-84955312464&doi=10.1016%2fj.ijhydene.2015.10.015&partnerID=40&md5=39d5b37cbb985c21515c11d6abc1086e
Sgarbossa, F., Arena, S., Tang, O., Peron, M.: Renewable hydrogen supply chains: a planning matrix and an agenda for future research. Int. J. Prod. Econ. 255, 108674 (2023). https://doi.org/10.1016/j.ijpe.2022.108674
Høyland, S.A., Kjestveit, K., Østgaard Skotnes, R.: Exploring the complexity of hydrogen perception and acceptance among key stakeholders in Norway. Int. J. Hydrogen Energy 48(21), 7896–7908 (2023). https://doi.org/10.1016/j.ijhydene.2022.11.144
Wanniarachchi, S., Hewage, K., Wirasinghe, C., Karunathilake, H., Sadiq, R.: Hydrogen fuel supply chains for vehicular emissions mitigation: a feasibility assessment for North American freight transport sector. Int. J. Sustain. Transp. 17(8), 855–869 (2023). https://doi.org/10.1080/15568318.2022.2116739, https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137765232&doi=10.1080%2f15568318.2022.2116739&partnerID=40&md5=6d4dc881b500d5edd077b7ff15af0cd5
Shardeo, V., Sarkar, B.D.: Adoption of hydrogen-fueled freight transportation: a strategy toward sustainability. Bus. Strategy Environ. (2023). https://doi.org/10.1002/bse.3482, https://www.scopus.com/inward/record.uri?eid=2-s2.0-85162627025&doi=10.1002%2fbse.3482&partnerID=40&md5=8bd00b875f0d5bfc0c2639d63b40de75
Rose, P.K., Neumann, F.: Hydrogen refueling station networks for heavy-duty vehicles in future power systems. Transp. Res. Part D: Transp. Environ. 83, 102358 (2020). https://doi.org/10.1016/j.trd.2020.102358
Sadik-Zada, E.R., Santibanez Gonzalez, E., Gatto, A., Althaus, T., Quliyev, F.: Pathways to the hydrogen mobility futures in German public transportation: a scenario analysis. Renew. Energy 205, 384–392 (20230. https://doi.org/10.1016/j.renene.2022.12.087
Oldenbroek, V., Wijtzes, S., van Wijk, A., Blok, K.; Fuel cell electric vehicle to grid & H2: balancing national electricity, heating & transport systems a scenario analysis for Germany in the year 2050. In: 2017 IEEE Green Energy and Smart Systems Conference (IGESSC), pp. 1–6 (2017). https://doi.org/10.1109/IGESC.2017.8283458
Oldenbroek, V., Smink, G., Salet, T., van Wijk, A.J.: Fuel cell electric vehicle as a power plant: techno-economic scenario analysis of a renewable integrated transportation and energy system for smart cities in two climates. Appl. Sci. 10(1), 143 (2020). https://doi.org/10.3390/app10010143, https://www.mdpi.com/2076-3417/10/1/143
Baufumé, S., et al.: GIS-based scenario calculations for a nationwide German hydrogen pipeline infrastructure. Int. J. Hydrogen Energy 38(10), 3813–3829 (2013). https://doi.org/10.1016/j.ijhydene.2012.12.147, https://www.sciencedirect.com/science/article/pii/s0360319913000670?casa_token=kuvtwtbfhkuaaaaa:ufofbcj0a-sq6jmc3ktr079vddqzn0_pksbw1jt_1_m6wz8pxq-khjpw_dvgkxk-fm2jidftiw
Reuß, M., Grube, T., Robinius, M., Stolten, D.: A hydrogen supply chain with spatial resolution: comparative analysis of infrastructure technologies in Germany. Appl. Energy 247, 438–453 (2019). https://doi.org/10.1016/j.apenergy.2019.04.064, https://www.sciencedirect.com/science/article/pii/s0306261919307111
Acknowledgments
This work was funded by the German Federal Ministry of Education and Research (BMBF) as part of the research project 03SF0687B, “hyBit - Hydrogen for Bremen’s industrial transformation”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Steinbacher, L.M., Teucke, M., Oelker, S., Broda, E., Ait-Alla, A., Freitag, M. (2024). Literature Review-Based Synthesis of a Framework for Evaluating Transformation of Hydrogen-Based Logistics. In: Freitag, M., Kinra, A., Kotzab, H., Megow, N. (eds) Dynamics in Logistics. LDIC 2024. Lecture Notes in Logistics. Springer, Cham. https://doi.org/10.1007/978-3-031-56826-8_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-56826-8_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-56825-1
Online ISBN: 978-3-031-56826-8
eBook Packages: EngineeringEngineering (R0)