Skip to main content

A Framework for Knowledge Representation Integrated with Dynamic Network Analysis

  • Conference paper
  • First Online:
Emerging Trends and Applications in Artificial Intelligence ( ICETAI 2023)

Abstract

Understanding the information residing in any system is of crucial importance. Knowledge Graphs are a tool for achieving such kinds of goals, as they hold the semantic interaction across the entities and, using links, connect them in a better representable way. In this paper, we proposed a dynamic network analysis framework for understanding the evolution of Knowledge Graphs across timelines. To validate our findings, we applied a thorough analysis of the movie recommendation Knowledge Graph, where we considered different snapshots of it. For example, past (historical information), present (current snapshot), and future (predictions based on historical data) information. For the predictions, we employ Graph Neural Network (GNN) modeling. We also compared our recommendation model with the latest related studies and achieved considerable results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.imdb.com/interfaces/.

  2. 2.

    https://cytoscape.org/.

  3. 3.

    https://neo4j.com/.

  4. 4.

    https://www.mathworks.com/products/matlab.html.

  5. 5.

    https://github.com/neo4j-graph-examples/recommendations/tree/main/data Dataset is downloadable from the mentioned link..

References

  1. Yasunaga, M., Ren, H., Bosselut, A., Liang, P. and Leskovec, J. QA-GNN: reasoning with language models and knowledge graphs for question answering. arXiv preprint arXiv:2104.06378 (2021)

  2. Ilievski, F., Pan, J.Z., et al.: KGTK: a toolkit for large knowledge graph manipulation and analysis. In: The Semantic Web-ISWC (2020)

    Google Scholar 

  3. Chen, X., Xie, H., Li, Z., Cheng, G.: Topic analysis and development in knowledge graph research: a bibliometric review on three decades. Neurocomputing 461, 497–515 (2021)

    Article  Google Scholar 

  4. Nguyen, H.L., Vu, D.T., Jung, J.J.: Knowledge graph fusion for smart systems: a survey. Inf. Fusion 61, 56–70 (2020)

    Article  Google Scholar 

  5. Gao, L., Wang, Y., Li, D., Shao, J., Song, J.: Real-time social media retrieval with spatial, temporal and social constraints. Neurocomputing 253, 77–88 (2017)

    Article  Google Scholar 

  6. Yao, W., et al.: Early and late fusion of multiple modalities in sentinel imagery and social media retrieval. In: Del Bimbo, A., et al. (eds.) ICPR 2021. LNCS, vol. 12667, pp. 591–606. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-68787-8_43

    Chapter  Google Scholar 

  7. Wise, C., et al.: COVID-19 knowledge graph: accelerating information retrieval and discovery for scientific literature. In: AACL-IJCNLP (2020)

    Google Scholar 

  8. Bosselut, A., Le Bras, R., Choi, Y.: Dynamic neuro-symbolic knowledge graph construction for zero-shot commonsense question answering (2021)

    Google Scholar 

  9. de Haan, P., Cohen, T.S., Welling, M.: Natural graph networks. Adv. Neural. Inf. Process. Syst. 33, 3636–3646 (2020)

    Google Scholar 

  10. Singhal, A.: Introducing the knowledge graph: things, not strings. Official google blog. https://blog.google/products/search/introducing-knowledge-graph-things-not/. Accessed 13 June 2023

  11. Chiesi, A.M.: Network Analysis. Pergamon (2001)

    Google Scholar 

  12. Carley, K.M.: Dynamic network analysis (2003)

    Google Scholar 

  13. Chu, A.M., Chan, T.W., So, M.K., Wong, W.K.: Dynamic network analysis of COVID-19 with a latent pandemic space model. Int. J. Environ. Res. Public Health 18(6), 3195 (2021)

    Article  Google Scholar 

  14. Chakrabarti, P., Jawed, M.S., Sarkhel, M.: COVID-19 pandemic and global financial market interlinkages: a dynamic temporal network analysis. Appl. Econ. 53, 2930–2945 (2021)

    Article  Google Scholar 

  15. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. Adv. Neural. Inf. Process. Syst. 30, 1–11 (2017)

    Google Scholar 

  16. Lambiotte, R., Schaub, M.T.: Modularity and Dynamics on Complex Networks. Cambridge University Press, Cambridge (2021)

    Google Scholar 

  17. Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recommender system: a survey and new perspectives. ACM Comput. Surv. (CSUR) 52, 1–38 (2019)

    Article  Google Scholar 

  18. Lü, J., Wen, G., Lu, R., Wang, Y., Zhang, S.: Networked knowledge and complex networks: an engineering view. IEEE/CAA J. Automatica Sinica 9, 1366–1383 (2022)

    Article  Google Scholar 

  19. Harary, F., Gupta, G.: Dynamic graph models. Math. Comput. Model. 25, 79–87 (1997)

    Article  MathSciNet  Google Scholar 

  20. Goyal, P., Chhetri, S.R., Canedo, A.: dyngraph2vec: capturing network dynamics using dynamic graph representation learning. Knowl.-Based Syst. 187, 104816 (2020)

    Article  Google Scholar 

  21. Khambhati, A.N., Sizemore, A.E., Betzel, R.F., Bassett, D.S.: Modeling and interpreting mesoscale network dynamics. Neuroimage 180, 337–349 (2018)

    Article  Google Scholar 

  22. Sizemore, A.E., Bassett, D.S.: Dynamic graph metrics: tutorial, toolbox, and tale. Neuroimage 180, 417–427 (2018)

    Article  Google Scholar 

  23. Skarding, J., Gabrys, B., Musial, K.: Foundations and modeling of dynamic networks using dynamic graph neural networks: a survey. IEEE Access 9, 79143–79168 (2021)

    Article  Google Scholar 

  24. Triguero-Ocaña, R., Martínez-López, B., Vicente, J., Barasona, J.A., Martínez-Guijosa, J., Acevedo, P.: Dynamic network of interactions in the wildlife-livestock interface in mediterranean Spain: an epidemiological point of view. Pathogens 9(2), 120 (2020)

    Article  Google Scholar 

  25. Xie, Y., Li, C., Yu, B., Zhang, C., Tang, Z.: A survey on dynamic network embedding. arXiv preprint arXiv:2006.08093 (2020)

  26. Chen, J., Wang, X., Xu, X.: GC-LSTM: graph convolution embedded LSTM for dynamic network link prediction. Appl. Intell. 52, 7513–7528 (2022)

    Article  Google Scholar 

  27. Rossi, A., Barbosa, D., Firmani, D., Matinata, A., Merialdo, P.: Knowledge graph embedding for link prediction: a comparative analysis. ACM Trans. Knowl. Disc. Data (TKDD) 15, 1–49 (2021)

    Google Scholar 

  28. Shao, B., Li, X., Bian, G.: A survey of research hotspots and frontier trends of recommendation systems from the perspective of knowledge graph. Expert Syst. Appl. 165, 113764 (2021)

    Article  Google Scholar 

  29. Tang, J., Liu, Y., Lin, K.-Y., Li, L.: Process bottlenecks identification and its root cause analysis using fusion-based clustering and knowledge graph. Adv. Eng. Inf. 55, 101862 (2023)

    Article  Google Scholar 

  30. Chen, H., Sultan, S. F., Tian, Y., Chen, M., Skiena, S.: Fast and accurate network embeddings via very sparse random projection (2019)

    Google Scholar 

  31. Fan, W., et al.: Graph neural networks for social recommendation (2019)

    Google Scholar 

  32. Dozat, T.: Incorporating nesterov momentum into adam (2016)

    Google Scholar 

  33. Saraswat, M., Chakraverty, S., Kala, A.: Analyzing emotion based movie recommender system using fuzzy emotion features. Int. J. Inf. Technol. 12, 467–472 (2020)

    Google Scholar 

  34. Lim, B., Bansal, S., Buru, A., Manthey, K.: A multimedia recommendation model based on collaborative graph. arXiv preprint arXiv:2205.14931 (2022)

  35. Munir, S., Ferretti, S.: Towards symbolic representation-based modeling of Temporal Knowledge Graphs. In: International Conference on Smart Applications, Communications and Networking (SmartNets), pp. 1–8 (2023). https://doi.org/10.1109/SmartNets58706.2023.10215541

Download references

Acknowledgement

This research is funded by the PON Program and the University of Urbino Carlo Bo under matriculation number: 317840.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siraj Munir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Munir, S., Ferretti, S., Malick, R.A.S. (2024). A Framework for Knowledge Representation Integrated with Dynamic Network Analysis. In: García Márquez, F.P., Jamil, A., Hameed, A.A., Segovia Ramírez, I. (eds) Emerging Trends and Applications in Artificial Intelligence. ICETAI 2023. Lecture Notes in Networks and Systems, vol 960. Springer, Cham. https://doi.org/10.1007/978-3-031-56728-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56728-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56727-8

  • Online ISBN: 978-3-031-56728-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics