Skip to main content

Evaluation of Double Fusion Satellite Rainfall Dataset in Establish Rainfall Thresholds for Landslide Occurrences Over Badung Regency-Bali

  • Chapter
  • First Online:
Landslide: Susceptibility, Risk Assessment and Sustainability

Abstract

Rainfall stations provide reliable rainfall data, but their availability is limited in mountainous areas, complex terrain, and remote areas. Satellite rainfall datasets (SRDs) provide high-resolution worldwide rainfall estimation, which has the potential to be used in identifying rainfall conditions that trigger landslides. Landslides can be predicted through rainfall threshold modeling, serving as an early warning system. It is essential to validate the chosen threshold model to assess the accuracy of forecasting landslide occurrences triggered by rainfall events. This study aims to evaluate the effectiveness of a dual fusion approach, utilizing two SRDs, in establishing rainfall thresholds for landslide prediction in the Badung regency over the period from 2015 to 2022. Rainfall threshold analysis in this investigation focuses on cumulative rainfall events occurring 5, 7, 10, and 15 days prior to the onset of landslides. The first fusion was established through the application of the cumulative distribution functions method, involving a comparison between the SRDs and the datasets from rain gauges. Subsequently, the analysis transitioned to the second fusion, where a weighted correlation coefficient function was employed to assess the connections between rain gauges and individual SRDs. The results illustrate that the second fusion of SRDs yields an area under the curve value of 0.82 for a 15-day cumulative rainfall, surpassing the performance of the first fusion. The first quartile approach demonstrates the highest accuracy compared to alternative methods, providing a reliable estimation of landslide occurrences with minimal error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AghaKouchak A, Nasrollahi N, Habib E (2009) Accounting for uncertainties of the TRMM satellite estimates. Remote Sens 1:606–619. https://doi.org/10.3390/rs1030606

    Article  Google Scholar 

  • Agou VD, Pavlides A, Hristopulos DT (2022) Spatial modeling of precipitation based on data-driven warping of Gaussian processes. Entropy 24:1–21. https://doi.org/10.3390/e24030321

    Article  Google Scholar 

  • Allo ET (2010) Determaining rainfall thresholds for landslide initiation: a case study in wadaslintang watershed, wonosobo. Gadjah Mada University, Central Java Province

    Google Scholar 

  • Alvioli M, Guzzetti F, Rossi M (2014) Scaling properties of rainfall induced landslides predicted by a physically based model. Geomorphol 213:38–47. https://doi.org/10.1016/j.geomorph.2013.12.039

    Article  Google Scholar 

  • Arrisaldi T, Wilopo W, Fathani TF (2021) Landslide susceptibility mapping and their rainfall thresholds model in Tinalah watershed, Kulon Progo district, Yogyakarta special region, Indonesia. J Appl Geol 6:112. https://doi.org/10.22146/jag.59185

  • Aryastana P, Liu C-Y, Jong-Dao Jou B, Cayanan E, Punay JP, Chen Y (2022) Assessment of satellite precipitation data sets for high variability and rapid evolution of typhoon precipitation events in the Philippines. Earth Sp Sci 9. https://doi.org/10.1029/2022EA002382

  • Aryastana P (2023) Grid satellite rainfall products potential application for developing I-D and E-D thresholds for landslide early alert system over Bali Island. 07. https://doi.org/10.30737/ukarst.v7i1.4318

  • Bengtsson L, Hagemann S, Hodges KI (2004) Can climate trends be calculated from reanalysis data? J Geophys Res Atmos 109:D11111. https://doi.org/10.1029/2004JD004536

    Article  Google Scholar 

  • Brunetti MT, Melillo M, Peruccacci S, Ciabatta L, Brocca L (2018) How far are we from the use of satellite rainfall products in landslide forecasting? Remote Sens Environ 210:65–75. https://doi.org/10.1016/j.rse.2018.03.016

    Article  Google Scholar 

  • Brunetti MT, Melillo M, Gariano SL, Ciabatta L, Brocca L, Amarnath G, Peruccacci S (2021) Satellite rainfall products outperform ground observations for landslide prediction in India. Hydrol Earth Syst Sci 25:3267–3279. https://doi.org/10.5194/hess-25-3267-2021

    Article  Google Scholar 

  • Chikalamo EE, Mavrouli OC, Ettema J, van Westen CJ, Muntohar AS, Mustofa A (2020) Satellite-derived rainfall thresholds for landslide early warning in Bogowonto catchment, central java, Indonesia. Int J Appl Earth Obs Geoinf 89:102093. https://doi.org/10.1016/j.jag.2020.102093

    Article  Google Scholar 

  • Department of Regional Development and Environment Organization of American States (1990) Disaster, planning and development: managing natural hazards to reduce loss

    Google Scholar 

  • Dinku T, Ruiz F, Connor SJ, Ceccato P (2010) Validation and intercomparison of satellite rainfall estimates over Colombia. J Appl Meteorol Climatol 49:1004–1014. https://doi.org/10.1175/2009JAMC2260.1

    Article  Google Scholar 

  • Fatkhuroyan, Wati T, Sukmana A, Kurniawan R (2018) Validation of satellite daily rainfall estimates over Indonesia. Forum Geogr 32:170–180. https://doi.org/10.23917/forgeo.v32i2.6288

  • Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27:861–874. https://doi.org/10.1016/j.patrec.2005.10.010

    Article  Google Scholar 

  • Ferardi FD, Wilopo W, Fathani TF (2018) Rainfall thresholds for landslide prediction in Loano subdistrict, Purworejo district central java province. J ofApplied Geol 3:23–31

    Google Scholar 

  • Gariano SL, Brunetti MT, Iovine G, Melillo M, Peruccacci S, Terranova O, Vennari C, Guzzetti F (2015) Calibration and validation of rainfall thresholds for shallow landslide forecasting in Sicily, southern Italy. Geomorphol 228:653–665. https://doi.org/10.1016/j.geomorph.2014.10.019

    Article  Google Scholar 

  • Gariano SL, Melillo M, Peruccacci S, Brunetti MT (2020) How much does the rainfall temporal resolution affect rainfall thresholds for landslide triggering? Nat Hazards 100:655–670. https://doi.org/10.1007/s11069-019-03830-x

    Article  Google Scholar 

  • Guo L, Jiang Z, Chen D, Le Treut H, Li L (2020) Projected precipitation changes over China for global warming levels at 1.5 °C and 2 °C in an ensemble of regional climate simulations: impact of bias correction methods. Clim Change 162:623–643. https://doi.org/10.1007/s10584-020-02841-z

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol Atmos Phys 98:239–267. https://doi.org/10.1007/s00703-007-0262-7

    Article  Google Scholar 

  • He S, Wang J, Liu S (2020) Rainfall event-duration thresholds for landslide occurrences in China. Water (switzerland) 12. https://doi.org/10.3390/w12020494

  • Hidayat R, Sutanto SJ, Hidayah A, Ridwan B, Mulyana A (2019) Development of a landslide early warning system in Indonesia. Geosci 9:451. https://doi.org/10.3390/geosciences9100451

    Article  Google Scholar 

  • Hidayat R, Zahro AA (2020) Penentuan Ambang Curah Hujan untuk Memprediksi Kejadian Longsor. J Sumber Daya Air 16:1–10. https://doi.org/10.32679/jsda.v16i1.483

  • Huffman GJ, Bolvin DT, Braithwaite D, Hsu K-L, Joyce RJ, Kidd C, Nelkin EJ, Sorooshian S, Stocker EF, Tan J, Wolff DB, Xie P (2020) Integrated multi-satellite retrievals for the global precipitation measurement (GPM) mission (IMERG). pp 343–353

    Google Scholar 

  • Iskandar I, Andika T, Wulandari W (2021) The model of nonstructural mitigation policy to the landslide prone residential areas in Lebong, Bengkulu. Yuridika 36:333. https://doi.org/10.20473/ydk.v36i2.22741

  • Katiraie-Boroujerdy P-S, Rahnamay Naeini M, Akbari Asanjan A, Chavoshian A, Hsu K, Sorooshian S (2020) Bias correction of satellite-based precipitation estimations using quantile mapping approach in different climate regions of Iran. Remote Sens 12:2102. https://doi.org/10.3390/rs12132102

    Article  Google Scholar 

  • Kim S, Parinussa RM, Liu YY, Johnson FM, Sharma A (2015) A framework for combining multiple soil moisture retrievals based on maximizing temporal correlation. Geophys Res Lett 42:6662–6670. https://doi.org/10.1002/2015GL064981

    Article  Google Scholar 

  • Kubota T, Hashizume H, Takahashi N, Shige S, Okamoto K, Ushio T, Aonashi K, Kachi M (2006) Global precipitation map using satelliteborne microwave radiometers by the GSMaP project: production and validation. In: 2006 IEEE international symposium on geoscience and remote sensing. IEEE, pp 2584–2587

    Google Scholar 

  • Kubota T, Aonashi K, Ushio T, Shige S, Takayabu YN, Kachi M, Arai Y, Tashima T, Masaki T, Kawamoto N, Mega T, Yamamoto MK, Hamada A, Yamaji M, Liu G, Oki R (2020) Global satellite mapping of precipitation (GSMaP) products in the GPM Era. pp 355–373

    Google Scholar 

  • Levizzani V, Cattani E (2019) Satellite remote sensing of precipitation and the terrestrial water cycle in a changing climate. Remote Sens 11. https://doi.org/10.3390/rs11192301

  • Liao Z, Hong Y, Wang J, Fukuoka H, Sassa K, Karnawati D, Fathani F (2010) Prototyping an experimental early warning system for rainfall-induced landslides in Indonesia using satellite remote sensing and geospatial datasets. Landslides 7:317–324. https://doi.org/10.1007/s10346-010-0219-7

    Article  Google Scholar 

  • Liu C-Y, Aryastana P, Liu G-R, Huang W-R (2020) Assessment of satellite precipitation product estimates over Bali Island. Atmos Res 244:105032. https://doi.org/10.1016/j.atmosres.2020.105032

    Article  Google Scholar 

  • Muntohar AS, Mavrouli O, Jetten VG, van Westen CJ, Hidayat R (2021) Development of landslide early warning system based on the satellite-derived rainfall threshold in Indonesia. In: Casagli N, Tofani V, Sassa K, Bobrowsky PT, Takara K (eds) Understanding and reducing landslide disaster risk. Springer, Cham, pp 227–235

    Chapter  Google Scholar 

  • Pratama GN, Suwarman R, Junnaedhi IDGA, Riawan E, Anugrah A (2017) Comparison landslide-triggering rainfall threshold using satellite data: TRMM and GPM in South Bandung area. IOP Conf Ser Earth Environ Sci 71. https://doi.org/10.1088/1755-1315/71/1/012003

  • Nauval F, Sinatra T, Awaludin A, Fatria D (2021) Performance evaluation of high-resolution satellite products in estimating rainfall condition over West Borneo. p 020009

    Google Scholar 

  • Nikolopoulos EI, Destro E, Maggioni V, Marra F, Borga M (2017) Satellite rainfall estimates for debris flow prediction: an evaluation based on rainfall accumulation-duration thresholds. J Hydrometeorol 18:2207–2214. https://doi.org/10.1175/JHM-D-17-0052.1

    Article  Google Scholar 

  • Nomnafa FR, Krisnayanti DS, Ramang R, Udiana IM (2022) Penggunaan data Satelit TRMM terhadap Stasiun Curah Hujan di WS Noelmina. J Tek Pengair 13:1–11. https://doi.org/10.21776/ub.pengairan.2022.013.01.01

  • Park JY, Lee SR, Kim YT, Kang S, Lee DH (2020) A regional-scale landslide early warning system based on the sequential evaluation method: development and performance analysis. Appl Sci 10. https://doi.org/10.3390/APP10175788

  • Popescu ME, Trandafir AC (2014) Landslide risk assessment and mitigation. Bridg Eng Handbook, Second Ed Substruct Des 315–359. https://doi.org/10.1201/b15621

  • Pradhan AMS, Lee SR, Kim YT (2019) A shallow slide prediction model combining rainfall threshold warnings and shallow slide susceptibility in Busan, Korea. Landslides 16:647–659. https://doi.org/10.1007/s10346-018-1112-z

    Article  Google Scholar 

  • Pratiwi AM (2022) Regional statistics of Badung regency 2022. Central Bureau of Statistic

    Google Scholar 

  • Rahmawati N, Rahayu K, Yuliasari ST (2021) Performance of daily satellite-based rainfall in groundwater basin of Merapi aquifer system, Yogyakarta. Theor Appl Climatol 146:173–190. https://doi.org/10.1007/s00704-021-03731-9

    Article  Google Scholar 

  • RaÅ¡ka P, Riezner J, Bíl M, KlimeÅ¡ J (2023) Long-term landslide impacts and adaptive responses in rural communities: using historical cases to validate the cumulative causation approach. Int J Disaster Risk Reduct 93:103748. https://doi.org/10.1016/j.ijdrr.2023.103748

    Article  Google Scholar 

  • Rossi M, Luciani S, Valigi D, Kirschbaum D, Brunetti MT, Peruccacci S, Guzzetti F (2017) Statistical approaches for the definition of landslide rainfall thresholds and their uncertainty using rain gauge and satellite data. Geomorphol 285:16–27. https://doi.org/10.1016/j.geomorph.2017.02.001

    Article  Google Scholar 

  • Salahi A, Ashrafzadeh A, Vazifedoust M (2023) Remote sensing-based precipitation forecasting using cloud optical characteristics: threshold optimization and evaluation in Northern and Western Iran. Nat Hazards. https://doi.org/10.1007/s11069-023-06352-9

    Article  Google Scholar 

  • Sassa K, Konagai K, Tiwari B, Sassa S (2022) Progress in landslide research and technology

    Google Scholar 

  • Segoni S, Piciullo L, Gariano SL (2018) A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides 15:1483–1501. https://doi.org/10.1007/s10346-018-0966-4

    Article  Google Scholar 

  • Shi J, Yuan F, Shi C, Zhao C, Zhang L, Ren L, Zhu Y, Jiang S, Liu Y (2020) Statistical evaluation of the latest GPM-Era IMERG and GSMaP satellite precipitation products in the yellow river source region. Water 12:1006. https://doi.org/10.3390/w12041006

    Article  Google Scholar 

  • Sunilkumar K, Yatagai A, Masuda M (2019) Preliminary evaluation of GPM-IMERG rainfall estimates over three distinct climate zones with APHRODITE. Earth Sp Sci 6:1321–1335. https://doi.org/10.1029/2018EA000503

    Article  Google Scholar 

  • Tan ML, Duan Z (2017) Assessment of GPM and TRMM precipitation products over Singapore. Remote Sens 9. https://doi.org/10.3390/rs9070720

  • Vaittinada Ayar P, Vrac M, Mailhot A (2021) Ensemble bias correction of climate simulations: preserving internal variability. Sci Rep 11:3098. https://doi.org/10.1038/s41598-021-82715-1

    Article  CAS  Google Scholar 

  • Wang N, Lombardo L, Gariano SL, Cheng W, Liu C, Xiong J, Wang R (2021) Using satellite rainfall products to assess the triggering conditions for hydro-morphological processes in different geomorphological settings in China. Int J Appl Earth Obs Geoinf 102:102350. https://doi.org/10.1016/j.jag.2021.102350

    Article  Google Scholar 

  • Wei G, Lü H, Crow WT, Zhu Y, Wang J, Su J (2018) Comprehensive evaluation of GPM-IMERG, CMORPH, and TMPA precipitation products with gauged rainfall over mainland China. Adv Meteorol 2018. https://doi.org/10.1155/2018/3024190

  • Yatagai A, Kamiguchi K, Arakawa O, Hamada A, Yasutomi N, Kitoh A (2012) APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull Am Meteorol Soc 93:1401–1415. https://doi.org/10.1175/BAMS-D-11-00122.1

    Article  Google Scholar 

  • Yu J, Li XF, Lewis E, Blenkinsop S, Fowler HJ (2020) UKGrsHP: a UK high-resolution gauge–radar–satellite merged hourly precipitation analysis dataset. Clim Dyn 54:2919–2940. https://doi.org/10.1007/s00382-020-05144-2

    Article  Google Scholar 

  • Yuda IWA, Prasetia R, As-Syakur AR, Osawa T, Nagai M (2020) An assessment of IMERG rainfall products over Bali at multiple time scale. E3S Web Conf 153:1–12. https://doi.org/10.1051/e3sconf/202015302001

  • Yuniawan RA, Rifa’i A, Faris F, Subiyantoro A, Satyaningsih R, Hidayah AN, Hidayat R, Mushthofa A, Ridwan BW, Priangga E, Muntohar AS, Jetten VG, van Westen CJ, den Bout BV, Sutanto SJ (2022) Revised rainfall threshold in the Indonesian landslide early warning system. Geosciences 12:129. https://doi.org/10.3390/geosciences12030129

  • Zhao C, Yao S, Ding Y, Zhao Q (2023) A gridded monthly precipitation merged rain gauge and satellite analysis dataset for the Tian Shan range between 1981 and 2019. J Appl Meteorol Climsatol 62:691–708. https://doi.org/10.1175/jamc-d-21-0241.1

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to the Regional Disaster Management Agency of Badung regency for furnishing the essential information and data for this study. Thanks to the Directorate of Research, Technology and Community Service of the Ministry of Education, Culture, Research and Technology for their financial support towards this research endeavor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Putu Aryastana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aryastana, P., Dewi, L., Wahyuni, P.I., Sinarta, I.N., Punay, J.P., Wui, J.C.H. (2024). Evaluation of Double Fusion Satellite Rainfall Dataset in Establish Rainfall Thresholds for Landslide Occurrences Over Badung Regency-Bali. In: Panda, G.K., Shaw, R., Pal, S.C., Chatterjee, U., Saha, A. (eds) Landslide: Susceptibility, Risk Assessment and Sustainability. Advances in Natural and Technological Hazards Research, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-031-56591-5_22

Download citation

Publish with us

Policies and ethics